These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 33661911)
1. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomen-pelvic CT: A retrospective single center preliminary study. Lim HK; Ha HI; Park SY; Han J PLoS One; 2021; 16(3):e0247330. PubMed ID: 33661911 [TBL] [Abstract][Full Text] [Related]
2. Femoral osteoporosis prediction model using autosegmentation and machine learning analysis with PyRadiomics on abdomen-pelvic computed tomography (CT). Park MS; Ha HI; Lim HK; Han J; Pak S Quant Imaging Med Surg; 2024 Jun; 14(6):3959-3969. PubMed ID: 38846273 [TBL] [Abstract][Full Text] [Related]
3. Applying Machine Learning Analysis Based on Proximal Femur of Abdominal Computed Tomography to Screen for Abnormal Bone Mass in Femur. Yuan X; Liang Y; Yang H; Feng L; Sun H; Li C; Qin J Acad Radiol; 2024 May; 31(5):2003-2010. PubMed ID: 37973518 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. Xie Q; Chen Y; Hu Y; Zeng F; Wang P; Xu L; Wu J; Li J; Zhu J; Xiang M; Zeng F BMC Med Imaging; 2022 Aug; 22(1):140. PubMed ID: 35941568 [TBL] [Abstract][Full Text] [Related]
5. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
6. Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging. Wang J; He Y; Yan L; Chen S; Zhang K Acad Radiol; 2024 Oct; 31(10):4159-4170. PubMed ID: 38693026 [TBL] [Abstract][Full Text] [Related]
7. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma]. Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392 [No Abstract] [Full Text] [Related]
8. Proximal Femur Hounsfield Units on CT Colonoscopy Correlate With Dual-energy X-ray Absorptiometry. Christensen DL; Nappo KE; Wolfe JA; Wade SM; Brooks DI; Potter BK; Forsberg JA; Tintle SM Clin Orthop Relat Res; 2019 Apr; 477(4):850-860. PubMed ID: 30811362 [TBL] [Abstract][Full Text] [Related]
9. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
10. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction. Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342 [TBL] [Abstract][Full Text] [Related]
11. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
12. A Computed Tomography-based Radiomics Analysis of Low-energy Proximal Femur Fractures in the Elderly Patients. Mohammadi SM; Moniri S; Mohammadhoseini P; Hanafi MG; Farasat M; Cheki M Curr Radiopharm; 2023 Jun; 16(3):222-232. PubMed ID: 36944624 [TBL] [Abstract][Full Text] [Related]
13. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data. Purkayastha S; Xiao Y; Jiao Z; Thepumnoeysuk R; Halsey K; Wu J; Tran TML; Hsieh B; Choi JW; Wang D; Vallières M; Wang R; Collins S; Feng X; Feldman M; Zhang PJ; Atalay M; Sebro R; Yang L; Fan Y; Liao WH; Bai HX Korean J Radiol; 2021 Jul; 22(7):1213-1224. PubMed ID: 33739635 [TBL] [Abstract][Full Text] [Related]
16. A diagnostic approach integrated multimodal radiomics with machine learning models based on lumbar spine CT and X-ray for osteoporosis. Cheng L; Cai F; Xu M; Liu P; Liao J; Zong S J Bone Miner Metab; 2023 Nov; 41(6):877-889. PubMed ID: 37898574 [TBL] [Abstract][Full Text] [Related]
17. Comparison of diagnostic accuracy of 2D and 3D measurements to determine opportunistic screening of osteoporosis using the proximal femur on abdomen-pelvic CT. Park SY; Ha HI; Lee SM; Lee IJ; Lim HK PLoS One; 2022; 17(1):e0262025. PubMed ID: 34982780 [TBL] [Abstract][Full Text] [Related]
18. A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma. Liu J; Wang C; Guo W; Zeng P; Liu Y; Lang N; Yuan H Radiol Med; 2021 Sep; 126(9):1226-1235. PubMed ID: 34159496 [TBL] [Abstract][Full Text] [Related]
19. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
20. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]