These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 33662716)
1. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
2. Long-term alkaline volatile fatty acids production from waste streams: Impact of pH and dominance of Dysgonomonadaceae. Owusu-Agyeman I; Plaza E; Cetecioglu Z Bioresour Technol; 2022 Feb; 346():126621. PubMed ID: 34958905 [TBL] [Abstract][Full Text] [Related]
3. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources. Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212 [TBL] [Abstract][Full Text] [Related]
4. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Yu P; Tu W; Wu M; Zhang Z; Wang H Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Wang K; Yin J; Shen D; Li N Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700 [TBL] [Abstract][Full Text] [Related]
6. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation. Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740 [TBL] [Abstract][Full Text] [Related]
7. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste. Zhou X; Lu Y; Huang L; Zhang Q; Wang X; Zhu J Bioresour Technol; 2021 Sep; 336():125338. PubMed ID: 34082333 [TBL] [Abstract][Full Text] [Related]
9. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Lu Y; Zhang Q; Wang X; Zhou X; Zhu J Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559 [TBL] [Abstract][Full Text] [Related]
10. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. Rasi S; Vainio M; Blasco L; Kahala M; Leskinen H; Tampio E J Environ Manage; 2022 Apr; 308():114640. PubMed ID: 35124316 [TBL] [Abstract][Full Text] [Related]
11. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
13. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
14. Shifts of microbial community and metabolic function during food wastes and waste activated sludge co-fermentation in semi-continuous-flow reactors: Effects of fermentation substrate and zero-valent iron. Zhang Q; Cao J; Wu Y; Zhao J; Guo W; Huang W; Feng Q; Fang F; Aleem M; Luo J Bioresour Technol; 2020 Oct; 313():123686. PubMed ID: 32570079 [TBL] [Abstract][Full Text] [Related]
15. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation. Atasoy M; Cetecioglu Z J Environ Manage; 2022 Oct; 319():115700. PubMed ID: 35982552 [TBL] [Abstract][Full Text] [Related]
16. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452 [TBL] [Abstract][Full Text] [Related]
18. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Greses S; Tomás-Pejó E; Gónzalez-Fernández C Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382 [TBL] [Abstract][Full Text] [Related]
19. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. Atasoy M; Eyice O; Schnürer A; Cetecioglu Z Bioresour Technol; 2019 Nov; 292():121889. PubMed ID: 31394468 [TBL] [Abstract][Full Text] [Related]
20. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration. Wang Q; Zhang G; Chen L; Yang N; Wu Y; Fang W; Zhang R; Wang X; Fu C; Zhang P Waste Manag; 2023 Jun; 164():29-36. PubMed ID: 37023642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]