BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 33662770)

  • 1. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review.
    Xu A; Chang H; Xu Y; Li R; Li X; Zhao Y
    Waste Manag; 2021 Apr; 124():385-402. PubMed ID: 33662770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Municipal solid waste management for low-carbon transition: A systematic review of artificial neural network applications for trend prediction.
    Hoy ZX; Phuang ZX; Farooque AA; Fan YV; Woon KS
    Environ Pollut; 2024 Mar; 344():123386. PubMed ID: 38242306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation.
    Jassim MS; Coskuner G; Zontul M
    Waste Manag Res; 2022 Feb; 40(2):195-204. PubMed ID: 33818220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of municipal solid waste generation using nonlinear autoregressive network.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Maulud KN
    Environ Monit Assess; 2015 Dec; 187(12):753. PubMed ID: 26573690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation.
    Adeleke O; Akinlabi SA; Jen TC; Dunmade I
    Waste Manag Res; 2021 Aug; 39(8):1058-1068. PubMed ID: 33596781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review.
    Guo HN; Wu SB; Tian YJ; Zhang J; Liu HT
    Bioresour Technol; 2021 Jan; 319():124114. PubMed ID: 32942236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes.
    Coskuner G; Jassim MS; Zontul M; Karateke S
    Waste Manag Res; 2021 Mar; 39(3):499-507. PubMed ID: 32586206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction.
    Noori R; Karbassi A; Salman Sabahi M
    J Environ Manage; 2010; 91(3):767-71. PubMed ID: 19913989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.
    Azadi S; Karimi-Jashni A
    Waste Manag; 2016 Feb; 48():14-23. PubMed ID: 26482809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedforward backpropagation artificial neural networks for predicting mechanical responses in complex nonlinear structures: A study on a long bone.
    Mouloodi S; Rahmanpanah H; Gohari S; Burvill C; Davies HMS
    J Mech Behav Biomed Mater; 2022 Apr; 128():105079. PubMed ID: 35114570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence applications in solid waste management: A systematic research review.
    Abdallah M; Abu Talib M; Feroz S; Nasir Q; Abdalla H; Mahfood B
    Waste Manag; 2020 May; 109():231-246. PubMed ID: 32428727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated development of artificial neural networks for clinical purposes: Application for predicting the outcome of choledocholithiasis surgery.
    Vukicevic AM; Stojadinovic M; Radovic M; Djordjevic M; Cirkovic BA; Pejovic T; Jovicic G; Filipovic N
    Comput Biol Med; 2016 Aug; 75():80-9. PubMed ID: 27261565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models.
    Vu HL; Ng KTW; Bolingbroke D
    Waste Manag; 2019 Feb; 84():129-140. PubMed ID: 30691884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What are artificial neural networks and what they can do?
    Dohnal V; Kuca K; Jun D
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2005 Dec; 149(2):221-4. PubMed ID: 16601760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.