BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33662940)

  • 1. Artificial neural networks for positioning of gamma interactions in monolithic PET detectors.
    Decuyper M; Stockhoff M; Vandenberghe S; Van Holen R
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33662940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of long rectangular semi-monolithic scintillator PET detectors.
    Zhang X; Wang X; Ren N; Hu B; Ding B; Kuang Z; Wu S; Sang Z; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2019 Apr; 46(4):1608-1619. PubMed ID: 30723932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution monolithic LYSO detector with 6-layer depth-of-interaction for clinical PET.
    Stockhoff M; Decuyper M; Van Holen R; Vandenberghe S
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34261049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An edge-readout, multilayer detector for positron emission tomography.
    Li X; Ruiz-Gonzalez M; Furenlid LR
    Med Phys; 2018 Jun; 45(6):2425-2438. PubMed ID: 29635734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical simulation study on the spatial resolution of a thick monolithic PET detector.
    Stockhoff M; Van Holen R; Vandenberghe S
    Phys Med Biol; 2019 Sep; 64(19):195003. PubMed ID: 31416055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators.
    Carra P; Giuseppina Bisogni M; Ciarrocchi E; Morrocchi M; Sportelli G; Rosso V; Belcari N
    Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35609583
    [No Abstract]   [Full Text] [Related]  

  • 7. Performance evaluation of side-by-side optically coupled monolithic LYSO crystals.
    Freire M; Echegoyen S; Gonzalez-Montoro A; Sanchez F; Gonzalez AJ
    Med Phys; 2022 Aug; 49(8):5616-5626. PubMed ID: 35689501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution estimation in different monolithic PET detectors using neural networks.
    Belov MV; Kozlov VA; Tskhay VS; Zavertyaev MV
    Phys Med; 2023 Feb; 106():102527. PubMed ID: 36610177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble of neural networks for 3D position estimation in monolithic PET detectors.
    Iborra A; González AJ; González-Montoro A; Bousse A; Visvikis D
    Phys Med Biol; 2019 Oct; 64(19):195010. PubMed ID: 31416053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finely segmented semi-monolithic detector tailored for high-resolution PET.
    Kuhl Y; Mueller F; Naunheim S; Bovelett M; Lambertus J; Schug D; Weissler B; Gegenmantel E; Gebhardt P; Schulz V
    Med Phys; 2024 May; 51(5):3421-3436. PubMed ID: 38214395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.
    Borghi G; Tabacchini V; Schaart DR
    Phys Med Biol; 2016 Jul; 61(13):4904-28. PubMed ID: 27285955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise positioning of gamma ray interactions in multiplexed pixelated scintillators using artificial neural networks.
    Correia PMM; Cruzeiro B; Dias J; Encarnação PMCC; Ribeiro FM; Rodrigues CA; Silva ALM
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38779912
    [No Abstract]   [Full Text] [Related]  

  • 13. Simulation study on the performance of time-over-threshold based positioning in monolithic PET detectors.
    Thyssen C; Deprez K; Mollet P; Van Holen R; Vandenberghe S
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34875646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep residual-convolutional neural networks for event positioning in a monolithic annular PET scanner.
    Jaliparthi G; Martone PF; Stolin AV; Raylman RR
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34153950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compton PET: a layered structure PET detector with high performance.
    Peng P; Judenhofer MS; Cherry SR
    Phys Med Biol; 2019 May; 64(10):10LT01. PubMed ID: 31013481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI.
    Borghi G; Peet BJ; Tabacchini V; Schaart DR
    Phys Med Biol; 2016 Jul; 61(13):4929-49. PubMed ID: 27286232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving depth-of-interaction resolution in pixellated PET detectors using neural networks.
    Zatcepin A; Pizzichemi M; Polesel A; Paganoni M; Auffray E; Ziegler SI; Omidvari N
    Phys Med Biol; 2020 Aug; 65(17):175017. PubMed ID: 32570223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a SiPM based semi-monolithic scintillator PET detector.
    Zhang X; Wang X; Ren N; Kuang Z; Deng X; Fu X; Wu S; Sang Z; Hu Z; Liang D; Liu X; Zheng H; Yang Y
    Phys Med Biol; 2017 Sep; 62(19):7889-7904. PubMed ID: 28858853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of inter-crystal scattering events on the performance of PET detectors.
    Zhang C; Sang Z; Wang X; Zhang X; Yang Y
    Phys Med Biol; 2019 Oct; 64(20):205004. PubMed ID: 31530747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-crystal scattering recovery of light-sharing PET detectors using convolutional neural networks.
    Lee S; Lee JS
    Phys Med Biol; 2021 Sep; 66(18):. PubMed ID: 34438380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.