These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33662940)

  • 41. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.
    Ota R; Yamada R; Moriya T; Hasegawa T
    Med Phys; 2018 May; 45(5):1999-2008. PubMed ID: 29509969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Whole gamma imaging: a new concept of PET combined with Compton imaging.
    Yoshida E; Tashima H; Nagatsu K; Tsuji AB; Kamada K; Parodi K; Yamaya T
    Phys Med Biol; 2020 Jun; 65(12):125013. PubMed ID: 32348968
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Timing evaluation of a PET detector block based on semi-monolithic LYSO crystals.
    Cucarella N; Barrio J; Lamprou E; Valladares C; Benlloch JM; Gonzalez AJ
    Med Phys; 2021 Dec; 48(12):8010-8023. PubMed ID: 34723380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning based methods for gamma ray interaction location estimation in monolithic scintillation crystal detectors.
    Tao L; Li X; Furenlid LR; Levin CS
    Phys Med Biol; 2020 Jun; 65(11):115007. PubMed ID: 32235062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast calibration of SPECT monolithic scintillation detectors using un-collimated sources.
    España S; Deprez K; Van Holen R; Vandenberghe S
    Phys Med Biol; 2013 Jul; 58(14):4807-25. PubMed ID: 23787300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms.
    Kawula M; Binder TM; Liprandi S; Viegas R; Parodi K; Thirolf PG
    Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34062523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiplexing strategies for monolithic crystal PET detector modules.
    Pierce LA; Hunter WC; Haynor DR; MacDonald LR; Kinahan PE; Miyaoka RS
    Phys Med Biol; 2014 Sep; 59(18):5347-60. PubMed ID: 25146849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reducing Calibration Time in PET Systems Based on Monolithic Crystals.
    Freire M; Cañizares G; Echegoyen S; Gonzalez-Montoro A; Gonzalez AJ
    Front Med (Lausanne); 2021; 8():734476. PubMed ID: 34859004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polaroid-PET: a PET scanner with detectors fitted with Polaroid for filtering unpolarized optical photons-a Monte Carlo simulation study.
    Sanaat A; Ashrafi-Belgabad A; Zaidi H
    Phys Med Biol; 2020 Dec; 65(23):235044. PubMed ID: 33263320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CHERENCUBE: concept definition and implementation challenges of a Cherenkov-based detector block for PET.
    Somlai-Schweiger I; Ziegler SI
    Med Phys; 2015 Apr; 42(4):1825-35. PubMed ID: 25832073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Positioning true coincidences that undergo inter-and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system.
    Abbaszadeh S; Chinn G; Levin CS
    Phys Med Biol; 2018 Jan; 63(2):025012. PubMed ID: 29131809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SiPM signal readout for inter-crystal scatter event identification in PET detectors.
    Park H; Lee JS
    Phys Med Biol; 2020 Oct; 65(20):205010. PubMed ID: 32702670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors.
    Park SJ; Rogers WL; Huh S; Kagan H; Honscheid K; Burdette D; Chesi E; Lacasta C; Llosa G; Mikuz M; Studen A; Weilhammer P; Clinthorne NH
    Phys Med Biol; 2007 May; 52(10):2807-26. PubMed ID: 17473353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system.
    Saaidi R; Rodríguez-Villafuerte M; Alva-Sánchez H; Martínez-Dávalos A
    PLoS One; 2024; 19(3):e0297829. PubMed ID: 38427663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A practical method for depth of interaction determination in monolithic scintillator PET detectors.
    van Dam HT; Seifert S; Vinke R; Dendooven P; Löhner H; Beekman FJ; Schaart DR
    Phys Med Biol; 2011 Jul; 56(13):4135-45. PubMed ID: 21693789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.
    Bieniosek MF; Cates JW; Levin CS
    Phys Med Biol; 2016 Nov; 61(21):7639-7651. PubMed ID: 27740946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Depth of interaction calibration for PET detectors with dual-ended readout by PSAPDs.
    Yang Y; Qi J; Wu Y; St James S; Farrell R; Dokhale PA; Shah KS; Cherry SR
    Phys Med Biol; 2009 Jan; 54(2):433-45. PubMed ID: 19098356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximum likelihood positioning algorithm for high-resolution PET scanners.
    Gross-Weege N; Schug D; Hallen P; Schulz V
    Med Phys; 2016 Jun; 43(6):3049-3061. PubMed ID: 27277052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a dual-ended readout detector with segmented crystal bars made using a subsurface laser engraving technique.
    Mohammadi A; Yoshida E; Nishikido F; Nitta M; Shimizu K; Sakai T; Yamaya T
    Phys Med Biol; 2018 Jan; 63(2):025019. PubMed ID: 29176052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of dual-ended depth-of-interaction detectors using laser-induced crystals for small animal PET systems.
    Mohammadi A; Inadama N; Nishikido F; Yamaya T
    Phys Med Biol; 2021 Sep; 66(17):. PubMed ID: 34325418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.