These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33662940)
101. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements. McCallum S; Clowes P; Welch A Phys Med Biol; 2005 Sep; 50(17):4187-207. PubMed ID: 16177539 [TBL] [Abstract][Full Text] [Related]
102. Performance characterization of a new high resolution PET scintillation detector. Vandenbroucke A; Foudray AM; Olcott PD; Levin CS Phys Med Biol; 2010 Oct; 55(19):5895-911. PubMed ID: 20844332 [TBL] [Abstract][Full Text] [Related]
103. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution. Seifert S; van der Lei G; van Dam HT; Schaart DR Phys Med Biol; 2013 May; 58(9):3061-74. PubMed ID: 23587636 [TBL] [Abstract][Full Text] [Related]
104. Impact on the Spatial Resolution Performance of a Monolithic Crystal PET Detector Due to Different Sensor Parameters. Li X; Lockhart C; Lewellen TK; Miyaoka RS IEEE Nucl Sci Symp Conf Rec (1997); 2009 Oct; 2009():3102-3105. PubMed ID: 20806058 [TBL] [Abstract][Full Text] [Related]
105. Depth of interaction determination in monolithic scintillator with double side SiPM readout. Morrocchi M; Ambrosi G; Bisogni MG; Bosi F; Boretto M; Cerello P; Ionica M; Liu B; Pennazio F; Piliero MA; Pirrone G; Postolache V; Wheadon R; Del Guerra A EJNMMI Phys; 2017 Dec; 4(1):11. PubMed ID: 28211032 [TBL] [Abstract][Full Text] [Related]
106. Optical simulation of monolithic scintillator detectors using GATE/GEANT4. van der Laan DJJ; Schaart DR; Maas MC; Beekman FJ; Bruyndonckx P; van Eijk CWE Phys Med Biol; 2010 Mar; 55(6):1659-75. PubMed ID: 20182005 [TBL] [Abstract][Full Text] [Related]
107. Combining Surface Treatments with Shallow Slots to Improve the Spatial Resolution Performance of Continuous, Thick LYSO Detectors for PET. Kaul M; Surti S; Karp JS IEEE Trans Nucl Sci; 2013 Feb; 60(1):44-52. PubMed ID: 24077642 [TBL] [Abstract][Full Text] [Related]
108. Unbiased TOF estimation using leading-edge discriminator and convolutional neural network trained by single-source-position waveforms. Onishi Y; Hashimoto F; Ote K; Ota R Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35100575 [No Abstract] [Full Text] [Related]
109. Tomographic imaging with Compton PET modules: ideal case and first implementation. Peng P; Zhang M; Zeraatkar N; Qi J; Cherry SR J Instrum; 2021 Apr; 16(4):. PubMed ID: 34422087 [TBL] [Abstract][Full Text] [Related]
110. 3D error calibration of spatial spots based on dual position-sensitive detectors. Cheng S; Liu J; Li Z; Zhang P; Chen J; Yang H Appl Opt; 2023 Feb; 62(4):933-943. PubMed ID: 36821147 [TBL] [Abstract][Full Text] [Related]
111. Detector Position Estimation for PET Scanners. Pierce L; Miyaoka R; Lewellen T; Alessio A; Kinahan P Nucl Instrum Methods Phys Res A; 2012 Jun; 677():74-79. PubMed ID: 22505789 [TBL] [Abstract][Full Text] [Related]
112. A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks. Sadowski J; Stefanski J Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257425 [TBL] [Abstract][Full Text] [Related]
113. Use of gamma radiation and artificial neural network techniques to monitor characteristics of polyduct transport of petroleum by-products. Salgado WL; Dam RSF; Puertas EJA; Salgado CM; Silva AX Appl Radiat Isot; 2022 Aug; 186():110267. PubMed ID: 35561550 [TBL] [Abstract][Full Text] [Related]
114. Artificial neural networks with conformable transfer function for improving the performance in thermal and environmental processes. Solís-Pérez JE; Hernández JA; Parrales A; Gómez-Aguilar JF; Huicochea A Neural Netw; 2022 Aug; 152():44-56. PubMed ID: 35504195 [TBL] [Abstract][Full Text] [Related]
115. 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones. Hsu LS; Chow CW; Liu Y; Yeh CH Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433411 [TBL] [Abstract][Full Text] [Related]
116. Application of deep neural network and gamma radiation to monitor the transport of petroleum by-products through polyducts. Salgado WL; Dam RSF; Desterro FSMD; Cruz BLD; Silva AXD; Salgado CM Appl Radiat Isot; 2023 Oct; 200():110973. PubMed ID: 37586248 [TBL] [Abstract][Full Text] [Related]
117. Decoding Interaction Patterns from the Chemical Sequence of Polymers Using Neural Networks. Werner M ACS Macro Lett; 2021 Nov; 10(11):1333-1338. PubMed ID: 35549009 [TBL] [Abstract][Full Text] [Related]
118. Contact Failure Identification in Multilayered Media via Artificial Neural Networks and Autoencoders. Jardim LCS; Knupp DC; Domingos RP; Abreu LAS; Corona CC; Silva Neto AJ An Acad Bras Cienc; 2022; 94Suppl 3(Suppl 3):e20211577. PubMed ID: 35920466 [TBL] [Abstract][Full Text] [Related]
119. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system. Saaidi R; Rodríguez-Villafuerte M; Alva-Sánchez H; Martínez-Dávalos A PLoS One; 2024; 19(3):e0297829. PubMed ID: 38427663 [TBL] [Abstract][Full Text] [Related]
120. Concept development of an on-chip PET system. Clement C; Birindelli G; Pizzichemi M; Pagano F; Kruithof-De Julio M; Ziegler S; Rominger A; Auffray E; Shi K EJNMMI Phys; 2022 May; 9(1):38. PubMed ID: 35588024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]