These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33663210)

  • 1. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation.
    Jia TZ; Bapat NV; Verma A; Mamajanov I; Cleaves HJ; Chandru K
    Biomacromolecules; 2021 Apr; 22(4):1484-1493. PubMed ID: 33663210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membraneless polyester microdroplets as primordial compartments at the origins of life.
    Jia TZ; Chandru K; Hongo Y; Afrin R; Usui T; Myojo K; Cleaves HJ
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15830-15835. PubMed ID: 31332006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets.
    Chen C; Yi R; Igisu M; Sakaguchi C; Afrin R; Potiszil C; Kunihiro T; Kobayashi K; Nakamura E; Ueno Y; Antunes A; Wang A; Chandru K; Hao J; Jia TZ
    Small Methods; 2023 Dec; 7(12):e2300119. PubMed ID: 37203261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions Driven by Primitive Nonbiological Polyesters.
    Poddar A; Satthiyasilan N; Wang PH; Chen C; Yi R; Chandru K; Jia TZ
    Acc Chem Res; 2024 Aug; 57(15):2048-2057. PubMed ID: 39013010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in primitive polyester synthesis and membraneless microdroplet assembly.
    Z Jia T; Chandru K
    Biophys Physicobiol; 2023; 20(1):e200012. PubMed ID: 37234852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells.
    Francis BR
    Life (Basel); 2015 Feb; 5(1):467-505. PubMed ID: 25679748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry.
    Chandru K; Mamajanov I; Cleaves HJ; Jia TZ
    Life (Basel); 2020 Jan; 10(1):. PubMed ID: 31963928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid.
    Basu A; Kunduru KR; Katzhendler J; Domb AJ
    Adv Drug Deliv Rev; 2016 Dec; 107():82-96. PubMed ID: 27527666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization of alpha-hydroxy acids by ribosomes.
    Ohta A; Murakami H; Suga H
    Chembiochem; 2008 Nov; 9(17):2773-8. PubMed ID: 18985645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering polyester monomer diversity through novel pathway design.
    Bannister KR; Prather KL
    Curr Opin Biotechnol; 2023 Feb; 79():102852. PubMed ID: 36481340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyester synthases: natural catalysts for plastics.
    Rehm BH
    Biochem J; 2003 Nov; 376(Pt 1):15-33. PubMed ID: 12954080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending?
    Bandelli D; Alex J; Weber C; Schubert US
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900560. PubMed ID: 31793732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primitive membraneless compartments as a window into the earliest cells.
    Jia TZ
    Biophys Rev; 2023 Dec; 15(6):1897-1900. PubMed ID: 38192354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization.
    Ihre HR; Padilla De Jesús OL; Szoka FC; Fréchet JM
    Bioconjug Chem; 2002; 13(3):443-52. PubMed ID: 12009932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(hydroxy acids) in drug delivery.
    Juni K; Nakano M
    Crit Rev Ther Drug Carrier Syst; 1987; 3(3):209-32. PubMed ID: 3549007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles.
    Leung MH; Harada T; Dai S; Kee TW
    Langmuir; 2015 Oct; 31(42):11419-27. PubMed ID: 26439894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.
    Zumstein MT; Rechsteiner D; Roduner N; Perz V; Ribitsch D; Guebitz GM; Kohler HE; McNeill K; Sander M
    Environ Sci Technol; 2017 Jul; 51(13):7476-7485. PubMed ID: 28538100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible polyester macroligands: new subunits for the assembly of star-shaped polymers with luminescent and cleavable metal cores.
    Corbin PS; Webb MP; McAlvin JE; Fraser CL
    Biomacromolecules; 2001; 2(1):223-32. PubMed ID: 11749177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector.
    Ghodke S; Mahajan P; Gupta K; Ver Avadhani C; Dandekar P; Jain R
    Curr Gene Ther; 2019; 19(4):274-287. PubMed ID: 31393245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyesters in higher plants.
    Kolattukudy PE
    Adv Biochem Eng Biotechnol; 2001; 71():1-49. PubMed ID: 11217409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.