These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33663289)

  • 1. On the effect of biofouling on the minimum propulsion power of ships for safe navigation in realistic conditions.
    Liu S; Papanikolaou A; Bezunartea-Barrio A; Shang B; Sreedharan M
    Biofouling; 2021 Feb; 37(2):194-205. PubMed ID: 33663289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards an absolute scale for adhesion strength of ship hull microfouling.
    Oliveira DR; Larsson L; Granhag L
    Biofouling; 2019 Feb; 35(2):244-258. PubMed ID: 30966794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of barnacle fouling on ship resistance and powering.
    Demirel YK; Uzun D; Zhang Y; Fang HC; Day AH; Turan O
    Biofouling; 2017 Nov; 33(10):819-834. PubMed ID: 28980835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 'in-service' conditions - mimicked hull roughness ranges and biofilms - on the surface and the hydrodynamic characteristics of foul-release type coatings.
    Yeginbayeva IA; Atlar M; Turkmen S; Chen H
    Biofouling; 2020 Oct; 36(9):1074-1089. PubMed ID: 33291985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grooming using rotating brushes as a proactive method to control ship hull fouling.
    Tribou M; Swain G
    Biofouling; 2015; 31(4):309-19. PubMed ID: 25981344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diatom community structure on in-service cruise ship hulls.
    Hunsucker KZ; Koka A; Lund G; Swain G
    Biofouling; 2014 Oct; 30(9):1133-40. PubMed ID: 25377486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ship hull form on the resistance penalty from biofouling.
    Oliveira D; Larsson AI; Granhag L
    Biofouling; 2018 Mar; 34(3):262-272. PubMed ID: 29457754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economic impact of biofouling on a naval surface ship.
    Schultz MP; Bendick JA; Holm ER; Hertel WM
    Biofouling; 2011 Jan; 27(1):87-98. PubMed ID: 21161774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cleaning and repainting on the ship drag penalty.
    Utama IKAP; Nugroho B; Yusuf M; Prasetyo FA; Hakim ML; Suastika IK; Ganapathisubramani B; Hutchins N; Monty JP
    Biofouling; 2021 Apr; 37(4):372-386. PubMed ID: 34121514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small sea with high traffic - what is the biofouling potential of commercial ships in the Baltic Sea.
    Hegele-Drywa J; Normant-Saremba M; Wójcik-Fudalewska D
    Biofouling; 2024; 40(3-4):280-289. PubMed ID: 38742575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using ultraviolet light for improved antifouling performance on ship hull coatings.
    Hunsucker KZ; Braga C; Gardner H; Jongerius M; Hietbrink R; Salters B; Swain G
    Biofouling; 2019 Jul; 35(6):658-668. PubMed ID: 31385534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of containerships as transfer mechanisms of marine biofouling species.
    Davidson IC; Brown CW; Sytsma MD; Ruiz GM
    Biofouling; 2009 Oct; 25(7):645-55. PubMed ID: 20183123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mini-review: Assessing the drivers of ship biofouling management--aligning industry and biosecurity goals.
    Davidson I; Scianni C; Hewitt C; Everett R; Holm E; Tamburri M; Ruiz G
    Biofouling; 2016; 32(4):411-28. PubMed ID: 26930397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of biological development effects on drag forces of ceramic hull coating using Reynolds-averaged Navier-Stokes-based solver.
    Sanz DS; García S; Trueba A; Islam H; Soares CG
    Biofouling; 2023 Mar; 39(3):289-302. PubMed ID: 37154076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the ship drag penalty arising from light calcareous tubeworm fouling.
    Monty JP; Dogan E; Hanson R; Scardino AJ; Ganapathisubramani B; Hutchins N
    Biofouling; 2016; 32(4):451-64. PubMed ID: 26958740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings.
    Schultz MP; Walker JM; Steppe CN; Flack KA
    Biofouling; 2015; 31(9-10):759-73. PubMed ID: 26652667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ship Hull-Fouling Diatoms on Korean Research Vessels Revealed by Morphological and Molecular Methods, and Their Environmental Implications.
    Park J; Kim T; Muhammad BL; Ki JS
    J Microbiol; 2023 Jun; 61(6):615-626. PubMed ID: 37227623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of grooming on a copper ablative coating: a six year study.
    Tribou M; Swain G
    Biofouling; 2017 Jul; 33(6):494-504. PubMed ID: 28604166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary assessment of biofouling and non-indigenous marine species associated with commercial slow-moving vessels arriving in New Zealand.
    Hopkins GA; Forrest BM
    Biofouling; 2010 Jul; 26(5):613-21. PubMed ID: 20603727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.