BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 33663328)

  • 1. The progress in
    Jiang L; Zhang T; Lu K; Qi S
    Small GTPases; 2022 Jan; 13(1):56-76. PubMed ID: 33663328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a.
    Tang D; Sheng J; Xu L; Zhan X; Liu J; Jiang H; Shu X; Liu X; Zhang T; Jiang L; Zhou C; Li W; Cheng W; Li Z; Wang K; Lu K; Yan C; Qi S
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9876-9883. PubMed ID: 32303654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD.
    Su MY; Fromm SA; Zoncu R; Hurley JH
    Nature; 2020 Sep; 585(7824):251-255. PubMed ID: 32848248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.
    Ciura S; Sellier C; Campanari ML; Charlet-Berguerand N; Kabashi E
    Autophagy; 2016 Aug; 12(8):1406-8. PubMed ID: 27245636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy.
    Yang M; Liang C; Swaminathan K; Herrlinger S; Lai F; Shiekhattar R; Chen JF
    Sci Adv; 2016 Sep; 2(9):e1601167. PubMed ID: 27617292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD.
    Pang W; Hu F
    J Neurochem; 2021 May; 157(3):334-350. PubMed ID: 33259633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C9orf72-SMCR8-WDR41 complex is a GAP for small GTPases.
    Tang D; Sheng J; Xu L; Yan C; Qi S
    Autophagy; 2020 Aug; 16(8):1542-1543. PubMed ID: 32521185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis.
    Lan Y; Sullivan PM; Hu F
    Autophagy; 2019 May; 15(5):871-885. PubMed ID: 30696333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteostasis deregulation as a driver of C9ORF72 pathogenesis.
    Torres P; Cabral-Miranda F; Gonzalez-Teuber V; Hetz C
    J Neurochem; 2021 Dec; 159(6):941-957. PubMed ID: 34679204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72.
    Zhu Q; Jiang J; Gendron TF; McAlonis-Downes M; Jiang L; Taylor A; Diaz Garcia S; Ghosh Dastidar S; Rodriguez MJ; King P; Zhang Y; La Spada AR; Xu H; Petrucelli L; Ravits J; Da Cruz S; Lagier-Tourenne C; Cleveland DW
    Nat Neurosci; 2020 May; 23(5):615-624. PubMed ID: 32284607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C9orf72-SMCR8 complex suppresses primary ciliogenesis as a RAB8A GAP.
    Tang D; Bao H; Qi S
    Autophagy; 2024 May; 20(5):1205-1207. PubMed ID: 38293807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C9orf72 Gene Expression in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
    Shpilyukova YA; Fedotova EY; Abramycheva NY; Kochergin IA; Zakroyshchikova IV; Zakharova MN; Illarioshkin SN
    Bull Exp Biol Med; 2020 Sep; 169(5):673-676. PubMed ID: 32990847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture.
    Nörpel J; Cavadini S; Schenk AD; Graff-Meyer A; Hess D; Seebacher J; Chao JA; Bhaskar V
    PLoS Biol; 2021 Jul; 19(7):e3001344. PubMed ID: 34297726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALS-linked C9orf72-SMCR8 complex is a negative regulator of primary ciliogenesis.
    Tang D; Zheng K; Zhu J; Jin X; Bao H; Jiang L; Li H; Wang Y; Lu Y; Liu J; Liu H; Tang C; Feng S; Dong X; Xu L; Yin Y; Dang S; Wei X; Ren H; Dong B; Dai L; Cheng W; Wan M; Li Z; Chen J; Li H; Kong E; Wang K; Lu K; Qi S
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2220496120. PubMed ID: 38064514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model.
    Zhang K; Wang A; Zhong K; Qi S; Wei C; Shu X; Tu WY; Xu W; Xia C; Xiao Y; Chen A; Bai L; Zhang J; Luo B; Wang W; Shen C
    Neuron; 2021 Jun; 109(12):1949-1962.e6. PubMed ID: 33991504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Impact of C9orf72 on Japanese Patients with Amytrophic Lateral Sclerosis (ALS)/Frontotemporal Dementia (FTD)].
    Tomiyama H
    Brain Nerve; 2019 Nov; 71(11):1190-1208. PubMed ID: 31722305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders.
    Boivin M; Pfister V; Gaucherot A; Ruffenach F; Negroni L; Sellier C; Charlet-Berguerand N
    EMBO J; 2020 Feb; 39(4):e100574. PubMed ID: 31930538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
    Wen X; Westergard T; Pasinelli P; Trotti D
    Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models.
    Yuva-Aydemir Y; Almeida S; Gao FB
    Trends Neurosci; 2018 Jul; 41(7):457-469. PubMed ID: 29729808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.