These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33663384)

  • 1. DeltaNeTS+: elucidating the mechanism of drugs and diseases using gene expression and transcriptional regulatory networks.
    Noh H; Hua Z; Chrysinas P; Shoemaker JE; Gunawan R
    BMC Bioinformatics; 2021 Mar; 22(1):108. PubMed ID: 33663384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection.
    Noh H; Shoemaker JE; Gunawan R
    Nucleic Acids Res; 2018 Apr; 46(6):e34. PubMed ID: 29325153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene targets of drugs and chemical compounds from gene expression profiles.
    Noh H; Gunawan R
    Bioinformatics; 2016 Jul; 32(14):2120-7. PubMed ID: 27153589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection.
    Liu ZP; Wu H; Zhu J; Miao H
    BMC Bioinformatics; 2014 Oct; 15(1):336. PubMed ID: 25281301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of regulatory networks through temporal enrichment profiling and its application to H1N1 influenza viral infection.
    Zaslavsky E; Nudelman G; Marquez S; Hershberg U; Hartmann BM; Thakar J; Sealfon SC; Kleinstein SH
    BMC Bioinformatics; 2013; 14 Suppl 6(Suppl 6):S1. PubMed ID: 23734902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
    Margolin AA; Nemenman I; Basso K; Wiggins C; Stolovitzky G; Dalla Favera R; Califano A
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S7. PubMed ID: 16723010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying proteins controlling key disease signaling pathways.
    Gitter A; Bar-Joseph Z
    Bioinformatics; 2013 Jul; 29(13):i227-36. PubMed ID: 23812988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.
    Papili Gao N; Ud-Dean SMM; Gandrillon O; Gunawan R
    Bioinformatics; 2018 Jan; 34(2):258-266. PubMed ID: 28968704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    PLoS One; 2010 Apr; 5(4):e10268. PubMed ID: 20422009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development.
    Stigler B; Chamberlin HM
    BMC Syst Biol; 2012 Jun; 6():77. PubMed ID: 22734688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical identification of gene association by CID in application of constructing ER regulatory network.
    Liu LY; Chen CY; Chen MJ; Tsai MS; Lee CH; Phang TL; Chang LY; Kuo WH; Hwa HL; Lien HC; Jung SM; Lin YS; Chang KJ; Hsieh FJ
    BMC Bioinformatics; 2009 Mar; 10():85. PubMed ID: 19292896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
    Zare H; Kaveh M; Khodursky A
    PLoS One; 2011; 6(8):e21969. PubMed ID: 21857910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.
    Bao Y; Gao Y; Shi Y; Cui X
    Virus Genes; 2017 Jun; 53(3):357-366. PubMed ID: 28243843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential dependency network analysis to identify condition-specific topological changes in biological networks.
    Zhang B; Li H; Riggins RB; Zhan M; Xuan J; Zhang Z; Hoffman EP; Clarke R; Wang Y
    Bioinformatics; 2009 Feb; 25(4):526-32. PubMed ID: 19112081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus.
    Bao Y; Gao Y; Jin Y; Cong W; Pan X; Cui X
    Mol Genet Genomics; 2015 Oct; 290(5):1885-97. PubMed ID: 25893419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics Analysis of Proteome Changes in Calu-3 Cell Infected by Influenza A Virus (H5N1).
    Dong Q; Zhu H; Zhang Y; Yang D
    J Mol Microbiol Biotechnol; 2015; 25(5):311-9. PubMed ID: 26431429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.