These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis. Shen JD; Xu BP; Yu TL; Fei YX; Cai X; Huang LG; Jin LQ; Liu ZQ; Zheng YG Bioprocess Biosyst Eng; 2024 Jun; 47(6):841-850. PubMed ID: 38676737 [TBL] [Abstract][Full Text] [Related]
3. Production of d-Allulose with d-Psicose 3-Epimerase Expressed and Displayed on the Surface of Bacillus subtilis Spores. He W; Jiang B; Mu W; Zhang T J Agric Food Chem; 2016 Sep; 64(38):7201-7. PubMed ID: 27598572 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a recombinant d-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Tseng WC; Chen CN; Hsu CT; Lee HC; Fang HY; Wang MJ; Wu YH; Fang TY Int J Biol Macromol; 2018 Jun; 112():767-774. PubMed ID: 29427680 [TBL] [Abstract][Full Text] [Related]
5. Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. Yang P; Zhu X; Zheng Z; Mu D; Jiang S; Luo S; Wu Y; Du M World J Microbiol Biotechnol; 2018 Apr; 34(5):65. PubMed ID: 29687334 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a Recombinant D-Allulose 3-epimerase from Thermoclostridium caenicola with Potential Application in D-Allulose Production. Chen J; Chen D; Ke M; Ye S; Wang X; Zhang W; Mu W Mol Biotechnol; 2021 Jun; 63(6):534-543. PubMed ID: 33782841 [TBL] [Abstract][Full Text] [Related]
7. A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis. Patel SN; Kaushal G; Singh SP Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862716 [TBL] [Abstract][Full Text] [Related]
8. Redesign of a novel D-allulose 3-epimerase from Staphylococcus aureus for thermostability and efficient biocatalytic production of D-allulose. Zhu Z; Gao D; Li C; Chen Y; Zhu M; Liu X; Tanokura M; Qin HM; Lu F Microb Cell Fact; 2019 Mar; 18(1):59. PubMed ID: 30909913 [TBL] [Abstract][Full Text] [Related]
9. Biochemical identification of a hyperthermostable l-ribulose 3-epimerase from Labedella endophytica and its application for d-allulose bioconversion. Chen D; Chen J; Liu X; Guang C; Zhang W; Mu W Int J Biol Macromol; 2021 Oct; 189():214-222. PubMed ID: 34428486 [TBL] [Abstract][Full Text] [Related]
10. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Li Z; Hu Y; Yu C; Fei K; Shen L; Liu Y; Nakanishi H Biotechnol J; 2024 Aug; 19(8):e2400280. PubMed ID: 39167550 [TBL] [Abstract][Full Text] [Related]
11. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Zhang J; Xu C; Chen X; Ruan X; Zhang Y; Xu H; Guo Y; Xu J; Lv P; Wang Z Enzyme Microb Technol; 2020 May; 136():109531. PubMed ID: 32331724 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a d-tagatose 3-epimerase from Caballeronia fortuita and its application in rare sugar production. Li S; Chen Z; Zhang W; Guang C; Mu W Int J Biol Macromol; 2019 Oct; 138():536-545. PubMed ID: 31330210 [TBL] [Abstract][Full Text] [Related]
13. Expression and characterization of thermostable D-allulose 3-epimerase from Arthrobacter psychrolactophilus (Ap DAEase) with potential catalytic activity for bioconversion of D-allulose from d-fructose. Laksmi FA; Nirwantono R; Nuryana I; Agustriana E Int J Biol Macromol; 2022 Aug; 214():426-438. PubMed ID: 35750099 [TBL] [Abstract][Full Text] [Related]
14. Rational design improves both thermostability and activity of a new D-tagatose 3-epimerase from Kroppenstedtia eburnean to produce D-allulose. Guo D; Wang Z; Wei W; Song W; Wu J; Wen J; Hu G; Li X; Gao C; Chen X; Liu L Enzyme Microb Technol; 2024 Aug; 178():110448. PubMed ID: 38657401 [TBL] [Abstract][Full Text] [Related]
15. Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Mao S; Cheng X; Zhu Z; Chen Y; Li C; Zhu M; Liu X; Lu F; Qin HM Enzyme Microb Technol; 2020 Jan; 132():109441. PubMed ID: 31731964 [TBL] [Abstract][Full Text] [Related]
17. Thermostability Improvement of the d-Allulose 3-Epimerase from Dorea sp. CAG317 by Site-Directed Mutagenesis at the Interface Regions. Zhang W; Zhang Y; Huang J; Chen Z; Zhang T; Guang C; Mu W J Agric Food Chem; 2018 Jun; 66(22):5593-5601. PubMed ID: 29762031 [TBL] [Abstract][Full Text] [Related]
18. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production. Dedania SR; Patel MJ; Patel DM; Akhani RC; Patel DH Enzyme Microb Technol; 2017 Dec; 107():49-56. PubMed ID: 28899486 [TBL] [Abstract][Full Text] [Related]
19. X-ray structure of Arthrobacter globiformis M30 ketose 3-epimerase for the production of D-allulose from D-fructose. Yoshida H; Yoshihara A; Gullapalli PK; Ohtani K; Akimitsu K; Izumori K; Kamitori S Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):669-676. PubMed ID: 30279320 [TBL] [Abstract][Full Text] [Related]
20. Efficient D-allulose synthesis under acidic conditions by auto-inducing expression of the tandem D-allulose 3-epimerase genes in Bacillus subtilis. Hu M; Wei Y; Zhang R; Shao M; Yang T; Xu M; Zhang X; Rao Z Microb Cell Fact; 2022 Apr; 21(1):63. PubMed ID: 35440084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]