These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33663711)
1. Recovery of Equine Oocytes in Ambulatory Practice and Potential Complications. Rodriguez J; Maserati M; Robilotta T; Augusto G; Alonso MA; Redoan M; Tibary A; Fleury P J Equine Vet Sci; 2021 Mar; 98():103324. PubMed ID: 33663711 [TBL] [Abstract][Full Text] [Related]
2. Successful equine in vitro embryo production by ICSI - effect of season, mares' age, breed, and phase of the estrous cycle on embryo production. Fonte JS; Alonso MA; Junior MPM; Gonçalves MA; Pontes JH; Bordignon V; Fleury PDC; Fernandes CB Theriogenology; 2024 Jul; 223():47-52. PubMed ID: 38669841 [TBL] [Abstract][Full Text] [Related]
3. Effect of clinically-related factors on in vitro blastocyst development after equine ICSI. Choi YH; Velez IC; Macías-García B; Riera FL; Ballard CS; Hinrichs K Theriogenology; 2016 Apr; 85(7):1289-96. PubMed ID: 26777560 [TBL] [Abstract][Full Text] [Related]
4. Effects of repeated transvaginal aspiration of immature follicles on mare health and ovarian status. Velez IC; Arnold C; Jacobson CC; Norris JD; Choi YH; Edwards JF; Hayden SS; Hinrichs K Equine Vet J Suppl; 2012 Dec; (43):78-83. PubMed ID: 23447883 [TBL] [Abstract][Full Text] [Related]
5. Effect of Transvaginal Aspiration of Oocytes on Blood And Peritoneal Fluid Parameters in Mares. Orellana-Guerrero D; Dini P; Santos E; de la Fuente A; Meyers S; Koshak S; Dujovne G J Equine Vet Sci; 2022 Jul; 114():103949. PubMed ID: 35417768 [TBL] [Abstract][Full Text] [Related]
6. Effect of day of estrus cycle at time of transvaginal follicle aspiration for oocyte recovery on rates of in vitro maturation and blastocyst production after intracytoplasmic sperm injection. Walbornn SR; Felix M; Schnobrich MR; Bradecamp EA; Scoggin CF; Stefanovski D; Hinrichs K J Am Vet Med Assoc; 2022 Jul; 260(13):1683-1689. PubMed ID: 35905148 [TBL] [Abstract][Full Text] [Related]
7. Mare and stallion effects on blastocyst production in a commercial equine ovum pick-up-intracytoplasmic sperm injection program. Cuervo-Arango J; Claes AN; Stout TAE Reprod Fertil Dev; 2019 Jan; 31(12):1894-1903. PubMed ID: 31634435 [TBL] [Abstract][Full Text] [Related]
8. Effect of administering a crude equine gonadotrophin preparation to mares on follicular development, oocyte recovery rate and oocyte maturation in vivo. Brück I; Bézard J; Baltsen M; Synnestvedt B; Couty I; Greve T; Duchamp G J Reprod Fertil; 2000 Mar; 118(2):351-60. PubMed ID: 10864800 [TBL] [Abstract][Full Text] [Related]
9. Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Jacobson CC; Choi YH; Hayden SS; Hinrichs K Theriogenology; 2010 May; 73(8):1116-26. PubMed ID: 20202674 [TBL] [Abstract][Full Text] [Related]
10. Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Altermatt JL; Suh TK; Stokes JE; Carnevale EM Reprod Fertil Dev; 2009; 21(4):615-23. PubMed ID: 19383268 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Different Flushing Media Used to Aspirate Follicles on the Outcome of a Commercial Ovum Pickup-ICSI Program in Mares. Cuervo-Arango J; Claes AN; Beitsma M; Stout TAE J Equine Vet Sci; 2019 Apr; 75():74-77. PubMed ID: 31002097 [TBL] [Abstract][Full Text] [Related]
12. Chromatin and cytoplasmic characteristics of equine oocytes recovered by transvaginal ultrasound-guided follicle aspiration are influenced by the developmental stage of their follicle of origin. Vernunft A; Alm H; Tuchscherer A; Kanitz W; Hinrichs K; Torner H Theriogenology; 2013 Jul; 80(1):1-9. PubMed ID: 23623162 [TBL] [Abstract][Full Text] [Related]
13. Embryo development rates after transfer of oocytes matured in vivo, in vitro, or within oviducts of mares. Scott TJ; Carnevale EM; Maclellan LJ; Scoggin CF; Squires EL Theriogenology; 2001 Feb; 55(3):705-15. PubMed ID: 11245260 [TBL] [Abstract][Full Text] [Related]
14. Fertility in the mare after repeated transvaginal ultrasound-guided aspirations. Mari G; Barbara M; Eleonora I; Stefano B Anim Reprod Sci; 2005 Sep; 88(3-4):299-308. PubMed ID: 16143219 [TBL] [Abstract][Full Text] [Related]
15. Aspiration of oocytes from transitional, cycling, and pregnant mares. Purcell SH; Seidel GE; McCue PM; Squires EL Anim Reprod Sci; 2007 Aug; 100(3-4):291-300. PubMed ID: 16938415 [TBL] [Abstract][Full Text] [Related]
17. Superovulation, embryo recovery, and pregnancy rates from seasonally anovulatory donor mares treated with recombinant equine FSH (reFSH). Roser JF; Etcharren MV; Miragaya MH; Mutto A; Colgin M; Losinno L; Ross PJ Theriogenology; 2020 Jan; 142():291-295. PubMed ID: 31711702 [TBL] [Abstract][Full Text] [Related]
18. Oocyte recovery by ovum pick up and embryo production in river buffaloes (Bubalus bubalis). Manjunatha BM; Ravindra JP; Gupta PS; Devaraj M; Nandi S Reprod Domest Anim; 2008 Aug; 43(4):477-80. PubMed ID: 18282214 [TBL] [Abstract][Full Text] [Related]
19. A retrospective comparison of the efficiency of different assisted reproductive techniques in the horse, emphasizing the impact of maternal age. Cuervo-Arango J; Claes AN; Stout TA Theriogenology; 2019 Jul; 132():36-44. PubMed ID: 30986613 [TBL] [Abstract][Full Text] [Related]
20. Effect of collection-maturation interval time and pregnancy status of donor mares on oocyte developmental competence in horse cloning. Gambini A; Jarazo J; Karlanian F; De Stéfano A; Salamone DF J Anim Sci; 2014 Feb; 92(2):561-7. PubMed ID: 24664561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]