These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 33664266)
1. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides. Frensch B; Lechtenberg T; Kather M; Yunt Z; Betschart M; Kammerer B; Lüdeke S; Müller M; Piel J; Teufel R Nat Commun; 2021 Mar; 12(1):1431. PubMed ID: 33664266 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Toplak M; Saleem-Batcha R; Piel J; Teufel R Angew Chem Int Ed Engl; 2021 Dec; 60(52):26960-26970. PubMed ID: 34652045 [TBL] [Abstract][Full Text] [Related]
3. Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals. Zhang FM; Zhang SY; Tu YQ Nat Prod Rep; 2018 Jan; 35(1):75-104. PubMed ID: 29354841 [TBL] [Abstract][Full Text] [Related]
4. An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes. Toplak M; Nagel A; Frensch B; Lechtenberg T; Teufel R Chem Sci; 2022 Jun; 13(24):7157-7164. PubMed ID: 35799824 [TBL] [Abstract][Full Text] [Related]
5. Scalable Biomimetic Syntheses of Paeciloketal B, 1- Davison EK; Shepperson CE; Wilson ZE; Brimble MA J Nat Prod; 2021 Aug; 84(8):2345-2351. PubMed ID: 34351758 [TBL] [Abstract][Full Text] [Related]
6. Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore. Yunt Z; Reinhardt K; Li A; Engeser M; Dahse HM; Gütschow M; Bruhn T; Bringmann G; Piel J J Am Chem Soc; 2009 Feb; 131(6):2297-305. PubMed ID: 19175308 [TBL] [Abstract][Full Text] [Related]
7. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products. Toplak M; Teufel R Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769 [TBL] [Abstract][Full Text] [Related]
8. Benzannulated spiroketal natural products: isolation, biological activity, biosynthesis, and total synthesis. Gillard RM; Brimble MA Org Biomol Chem; 2019 Sep; 17(36):8272-8307. PubMed ID: 31478048 [TBL] [Abstract][Full Text] [Related]
9. Isolation, biological activity and synthesis of benzannulated spiroketal natural products. Sperry J; Wilson ZE; Rathwell DC; Brimble MA Nat Prod Rep; 2010 Aug; 27(8):1117-37. PubMed ID: 20648380 [No Abstract] [Full Text] [Related]
10. Biosynthesis of Atypical Angucyclines Unveils New Ring Rearrangement Reactions Catalyzed by Flavoprotein Monooxygenases. Xu X; Chang Y; Chen Y; Zhou L; Zhang F; Ma C; Che Q; Zhu T; Pfeifer BA; Zhang G; Li D Org Lett; 2024 Sep; 26(36):7489-7494. PubMed ID: 39194005 [TBL] [Abstract][Full Text] [Related]
11. Total Biosynthesis of Mutaxanthene Unveils a Flavoprotein Monooxygenase Catalyzing Xanthene Ring Formation. Xiang L; Shi J; Zhu A; Xu ZF; Liu SH; Wang YS; Guo ZK; Jiao RH; Tan RX; Ge HM Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218660. PubMed ID: 36727486 [TBL] [Abstract][Full Text] [Related]
12. Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13 Harunari E; Imada C; Igarashi Y J Nat Prod; 2019 Jun; 82(6):1609-1615. PubMed ID: 31181919 [TBL] [Abstract][Full Text] [Related]
13. Spirotetronate polyketides as leads in drug discovery. Lacoske MH; Theodorakis EA J Nat Prod; 2015 Mar; 78(3):562-75. PubMed ID: 25434976 [TBL] [Abstract][Full Text] [Related]
14. A practical total synthesis of (+)-spirolaxine methyl ether. Yadav JS; Sreenivas M; Srinivas Reddy A; Subba Reddy BV J Org Chem; 2010 Dec; 75(23):8307-10. PubMed ID: 21058660 [TBL] [Abstract][Full Text] [Related]
15. Chemical variation of natural product-like scaffolds: design and synthesis of spiroketal derivatives. Zinzalla G; Milroy LG; Ley SV Org Biomol Chem; 2006 May; 4(10):1977-2002. PubMed ID: 16688343 [TBL] [Abstract][Full Text] [Related]
16. Total Synthesis of Pyrolaside B: Phenol Trimerization through Sequenced Oxidative C-C and C-O Coupling. Neuhaus WC; Kozlowski MC Angew Chem Int Ed Engl; 2020 May; 59(20):7842-7847. PubMed ID: 32026544 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of human telomerase by rubromycins: implication of spiroketal system of the compounds as an active moiety. Ueno T; Takahashi H; Oda M; Mizunuma M; Yokoyama A; Goto Y; Mizushina Y; Sakaguchi K; Hayashi H Biochemistry; 2000 May; 39(20):5995-6002. PubMed ID: 10821671 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction. Sperry J; Liu YC; Brimble MA Org Biomol Chem; 2010 Jan; 8(1):29-38. PubMed ID: 20024126 [TBL] [Abstract][Full Text] [Related]
19. Marine Spirotetronates: Biosynthetic Edifices That Inspire Drug Discovery. Braddock AA; Theodorakis EA Mar Drugs; 2019 Apr; 17(4):. PubMed ID: 31010150 [TBL] [Abstract][Full Text] [Related]
20. Towards the total synthesis of calyculin C: preparation of the C(9)-C(25) spiroketal-dipropionate unit. Habrant D; Koskinen AM Org Biomol Chem; 2010 Oct; 8(19):4364-73. PubMed ID: 20683542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]