These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33664329)

  • 1. Using the Microwell-mesh to culture microtissues in vitro and as a carrier to implant microtissues in vivo into mice.
    Monterosso ME; Futrega K; Lott WB; Vela I; Williams ED; Doran MR
    Sci Rep; 2021 Mar; 11(1):5118. PubMed ID: 33664329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues.
    Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR
    Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow-derived stem/stromal cells (BMSC) 3D microtissues cultured in BMP-2 supplemented osteogenic induction medium are prone to adipogenesis.
    Futrega K; Mosaad E; Chambers K; Lott WB; Clements J; Doran MR
    Cell Tissue Res; 2018 Dec; 374(3):541-553. PubMed ID: 30136155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform.
    Mosaad EO; Chambers KF; Futrega K; Clements JA; Doran MR
    Sci Rep; 2018 Jan; 8(1):253. PubMed ID: 29321576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.
    Futrega K; Atkinson K; Lott WB; Doran MR
    Tissue Eng Part C Methods; 2017 Apr; 23(4):200-218. PubMed ID: 28406754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for manufacture and cryopreservation of cartilage microtissues.
    Shajib MS; Futrega K; Franco RAG; McKenna E; Guillesser B; Klein TJ; Crawford RW; Doran MR
    J Tissue Eng; 2023; 14():20417314231176901. PubMed ID: 37529249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts.
    Thomas PB; Alinezhad S; Joshi A; Sweeney K; Tse BWC; Tevz G; McPherson S; Nelson CC; Williams ED; Vela I
    Curr Oncol; 2023 Oct; 30(11):9437-9447. PubMed ID: 37999103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer.
    Falkenberg N; Höfig I; Rosemann M; Szumielewski J; Richter S; Schorpp K; Hadian K; Aubele M; Atkinson MJ; Anastasov N
    Cancer Med; 2016 Apr; 5(4):703-10. PubMed ID: 26763588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels.
    Jahn P; Karger RK; Soso Khalaf S; Hamad S; Peinkofer G; Sahito RGA; Pieroth S; Nitsche F; Lu J; Derichsweiler D; Brockmeier K; Hescheler J; M Schmidt A; Pfannkuche K
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35617928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering.
    Nulty J; Burdis R; Kelly DJ
    Front Bioeng Biotechnol; 2021; 9():661989. PubMed ID: 34169064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of prostate cancer cell transcriptomes in 2D monoculture vs 3D xenografts identify consistent gene expression alterations associated with tumor microenvironments.
    Brady L; Gil da Costa RM; Coleman IM; Matson CK; Risk MC; Coleman RT; Nelson PS
    Prostate; 2020 May; 80(6):491-499. PubMed ID: 32068909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstamped Petri dishes for scanning electrochemical microscopy analysis of arrays of microtissues.
    Sridhar A; de Boer HL; van den Berg A; Le Gac S
    PLoS One; 2014; 9(4):e93618. PubMed ID: 24690887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale cultivation of transplantable dermal papilla cellular aggregates using microfabricated PDMS arrays.
    Hsieh CH; Wang JL; Huang YY
    Acta Biomater; 2011 Jan; 7(1):315-24. PubMed ID: 20728585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-templated assembly of droplet-derived PEG microtissues.
    Li CY; Wood DK; Hsu CM; Bhatia SN
    Lab Chip; 2011 Sep; 11(17):2967-75. PubMed ID: 21776518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing tumor microtissue formation and epithelial-mesenchymal transition on a well-mesh microchip.
    Li K; Yang X; Gao X
    Biomicrofluidics; 2019 Jan; 13(1):014102. PubMed ID: 30867873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis.
    Risbridger GP; Taylor RA; Clouston D; Sliwinski A; Thorne H; Hunter S; Li J; Mitchell G; Murphy D; Frydenberg M; Pook D; Pedersen J; Toivanen R; Wang H; Papargiris M; Lawrence MG; Bolton DM
    Eur Urol; 2015 Mar; 67(3):496-503. PubMed ID: 25154392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss.
    Lee G; Lee J; Oh H; Lee S
    PLoS One; 2016; 11(8):e0161026. PubMed ID: 27513567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.