These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 33664526)
1. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? Sommerfeld A; Rammer W; Heurich M; Hilmers T; Müller J; Seidl R J Ecol; 2021 Feb; 109(2):737-749. PubMed ID: 33664526 [TBL] [Abstract][Full Text] [Related]
2. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. Dobor L; Hlásny T; Rammer W; Zimová S; Barka I; Seidl R J Environ Manage; 2020 Jan; 254():109792. PubMed ID: 31731030 [TBL] [Abstract][Full Text] [Related]
3. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Thom D; Rammer W; Seidl R Ecol Monogr; 2017 Nov; 87(4):665-684. PubMed ID: 29628526 [TBL] [Abstract][Full Text] [Related]
4. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Andrus RA; Hart SJ; Veblen TT Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254 [TBL] [Abstract][Full Text] [Related]
5. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Seidl R; Donato DC; Raffa KF; Turner MG Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739 [TBL] [Abstract][Full Text] [Related]
6. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management. Dobor L; Hlásny T; Zimová S Ecol Evol; 2020 Nov; 10(21):12233-12245. PubMed ID: 33209284 [TBL] [Abstract][Full Text] [Related]
7. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Seidl R; Müller J; Hothorn T; Bässler C; Heurich M; Kautz M J Appl Ecol; 2015 Oct; 53(2):530-540. PubMed ID: 27041769 [No Abstract] [Full Text] [Related]
8. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Seidl R; Rammer W Landsc Ecol; 2017 Jul; 32(7):1485-1498. PubMed ID: 28684889 [TBL] [Abstract][Full Text] [Related]
9. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado. Mietkiewicz N; Kulakowski D; Veblen TT Ecol Appl; 2018 Mar; 28(2):457-472. PubMed ID: 29405527 [TBL] [Abstract][Full Text] [Related]
10. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation. Hart SJ; Veblen TT; Mietkiewicz N; Kulakowski D PLoS One; 2015; 10(5):e0127975. PubMed ID: 26000906 [TBL] [Abstract][Full Text] [Related]
11. Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. Zimová S; Dobor L; Hlásny T; Rammer W; Seidl R For Ecol Manage; 2020 Nov; 475():118408. PubMed ID: 35686290 [TBL] [Abstract][Full Text] [Related]
12. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests? Morris JE; Buonanduci MS; Agne MC; Battaglia MA; Harvey BJ Ecol Appl; 2022 Jan; 32(1):e02474. PubMed ID: 34653267 [TBL] [Abstract][Full Text] [Related]
13. Time matters: Resilience of a post-disturbance forest landscape. Hlásny T; Augustynczik ALD; Dobor L Sci Total Environ; 2021 Dec; 799():149377. PubMed ID: 34364282 [TBL] [Abstract][Full Text] [Related]
14. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA. Kulakowski D; Veblen TT; Bebi P PLoS One; 2016; 11(7):e0158138. PubMed ID: 27438289 [TBL] [Abstract][Full Text] [Related]
15. The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments. Scheidl C; Heiser M; Kamper S; Thaler T; Klebinder K; Nagl F; Lechner V; Markart G; Rammer W; Seidl R Sci Total Environ; 2020 Nov; 742():140588. PubMed ID: 32629267 [TBL] [Abstract][Full Text] [Related]
16. Life and death of Picea abies after bark-beetle outbreak: ecological processes driving seedling recruitment. Macek M; Wild J; Kopecký M; Červenka J; Svoboda M; Zenáhlíková J; Brůna J; Mosandl R; Fischer A Ecol Appl; 2017 Jan; 27(1):156-167. PubMed ID: 28052495 [TBL] [Abstract][Full Text] [Related]
17. Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands. Arthur G; Jonathan L; Juliette C; Nicolas L; Christian P; Hugues C Environ Monit Assess; 2024 Feb; 196(3):226. PubMed ID: 38302669 [TBL] [Abstract][Full Text] [Related]
18. Climatic and stand drivers of forest resistance to recent bark beetle disturbance in European coniferous forests. Jaime L; Batllori E; Ferretti M; Lloret F Glob Chang Biol; 2022 Apr; 28(8):2830-2841. PubMed ID: 35090075 [TBL] [Abstract][Full Text] [Related]
19. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Janda P; Trotsiuk V; Mikoláš M; Bače R; Nagel TA; Seidl R; Seedre M; Morrissey RC; Kucbel S; Jaloviar P; Jasík M; Vysoký J; Šamonil P; Čada V; Mrhalová H; Lábusová J; Nováková MH; Rydval M; Matějů L; Svoboda M For Ecol Manage; 2017 Mar; 388():67-78. PubMed ID: 28860676 [TBL] [Abstract][Full Text] [Related]
20. Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Dobor L; Hlásny T; Rammer W; Barka I; Trombik J; Pavlenda P; Šebeň V; Štepánek P; Seidl R Agric For Meteorol; 2018 Dec; 263():308-322. PubMed ID: 35633776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]