These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33664955)

  • 1. Vector dynamics influence spatially imperfect genetic interventions against disease.
    Yuksel MK; Remien CH; Karki B; Bull JJ; Krone SM
    Evol Med Public Health; 2021; 9(1):1-10. PubMed ID: 33664955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics.
    Adams B; Kapan DD
    PLoS One; 2009 Aug; 4(8):e6763. PubMed ID: 19707544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.
    Ruktanonchai NW; Smith DL; De Leenheer P
    Math Biosci; 2016 Sep; 279():90-101. PubMed ID: 27436636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of human movement in the transmission of vector-borne pathogens.
    Stoddard ST; Morrison AC; Vazquez-Prokopec GM; Paz Soldan V; Kochel TJ; Kitron U; Elder JP; Scott TW
    PLoS Negl Trop Dis; 2009 Jul; 3(7):e481. PubMed ID: 19621090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control.
    Prosper O; Ruktanonchai N; Martcheva M
    J Theor Biol; 2012 Jun; 303():1-14. PubMed ID: 22525434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial dynamics of malaria transmission.
    Wu SL; Henry JM; Citron DT; Mbabazi Ssebuliba D; Nakakawa Nsumba J; Sánchez C HM; Brady OJ; Guerra CA; García GA; Carter AR; Ferguson HM; Afolabi BE; Hay SI; Reiner RC; Kiware S; Smith DL
    PLoS Comput Biol; 2023 Jun; 19(6):e1010684. PubMed ID: 37307282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens.
    Smith DL; Battle KE; Hay SI; Barker CM; Scott TW; McKenzie FE
    PLoS Pathog; 2012; 8(4):e1002588. PubMed ID: 22496640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial heterogeneity, host movement and mosquito-borne disease transmission.
    Acevedo MA; Prosper O; Lopiano K; Ruktanonchai N; Caughlin TT; Martcheva M; Osenberg CW; Smith DL
    PLoS One; 2015; 10(6):e0127552. PubMed ID: 26030769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of human movement on the persistence of vector-borne diseases.
    Cosner C; Beier JC; Cantrell RS; Impoinvil D; Kapitanski L; Potts MD; Troyo A; Ruan S
    J Theor Biol; 2009 Jun; 258(4):550-60. PubMed ID: 19265711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate.
    Suparit P; Wiratsudakul A; Modchang C
    Theor Biol Med Model; 2018 Aug; 15(1):11. PubMed ID: 30064447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010.
    Reiner RC; Perkins TA; Barker CM; Niu T; Chaves LF; Ellis AM; George DB; Le Menach A; Pulliam JR; Bisanzio D; Buckee C; Chiyaka C; Cummings DA; Garcia AJ; Gatton ML; Gething PW; Hartley DM; Johnston G; Klein EY; Michael E; Lindsay SW; Lloyd AL; Pigott DM; Reisen WK; Ruktanonchai N; Singh BK; Tatem AJ; Kitron U; Hay SI; Scott TW; Smith DL
    J R Soc Interface; 2013 Apr; 10(81):20120921. PubMed ID: 23407571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial structure undermines parasite suppression by gene drive cargo.
    Bull JJ; Remien CH; Gomulkiewicz R; Krone SM
    PeerJ; 2019; 7():e7921. PubMed ID: 31681512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition.
    Moore SM; Manore CA; Bokil VA; Borer ET; Hosseini PR
    Bull Math Biol; 2011 Nov; 73(11):2707-30. PubMed ID: 21505932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An almost periodic Ross-Macdonald model with structured vector population in a patchy environment.
    Wang BG; Qiang L; Wang ZC
    J Math Biol; 2020 Feb; 80(3):835-863. PubMed ID: 31655877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habitat fragmentation promotes malaria persistence.
    Gao D; van den Driessche P; Cosner C
    J Math Biol; 2019 Dec; 79(6-7):2255-2280. PubMed ID: 31520106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species interactions affect the spread of vector-borne plant pathogens independent of transmission mode.
    Crowder DW; Li J; Borer ET; Finke DL; Sharon R; Pattemore DE; Medlock J
    Ecology; 2019 Sep; 100(9):e02782. PubMed ID: 31170312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of Anopheles mosquitoes.
    Magombedze G; Ferguson NM; Ghani AC
    Parasit Vectors; 2018 Nov; 11(1):576. PubMed ID: 30390714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weather, host and vector--their interplay in the spread of insect-borne animal virus diseases.
    Sellers RF
    J Hyg (Lond); 1980 Aug; 85(1):65-102. PubMed ID: 6131919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biting patterns of malaria vectors of the lower Shire valley, southern Malawi.
    Mburu MM; Mzilahowa T; Amoah B; Chifundo D; Phiri KS; van den Berg H; Takken W; McCann RS
    Acta Trop; 2019 Sep; 197():105059. PubMed ID: 31194960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.