These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33665034)

  • 21. Effectiveness of a dry-land resistance training program on strength, power, and swimming performance in paralympic swimmers.
    Dingley AA; Pyne DB; Youngson J; Burkett B
    J Strength Cond Res; 2015 Mar; 29(3):619-26. PubMed ID: 25226306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in the key parameters of the individual versus relay swimming starts.
    Qiu X; Veiga S; Lorenzo A; Kibele A; Navarro E
    Sports Biomech; 2024 May; 23(5):598-610. PubMed ID: 33726621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined strength exercises on dry land and in the water to improve swimming parameters of athletes with paraplegia.
    Skucas K; Pokvytyte V
    J Sports Med Phys Fitness; 2018 Mar; 58(3):197-203. PubMed ID: 27727200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.
    Mike JN; Cole N; Herrera C; VanDusseldorp T; Kravitz L; Kerksick CM
    J Strength Cond Res; 2017 Mar; 31(3):773-786. PubMed ID: 27787464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of plyometric training on swimming block start performance in adolescents.
    Bishop DC; Smith RJ; Smith MF; Rigby HE
    J Strength Cond Res; 2009 Oct; 23(7):2137-43. PubMed ID: 19855343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of a resistance training programme on the grab, track and swing starts in swimming.
    Breed RV; Young WB
    J Sports Sci; 2003 Mar; 21(3):213-20. PubMed ID: 12703850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.
    García-Ramos A; Štirn I; Padial P; Argüelles-Cienfuegos J; De la Fuente B; Calderón C; Bonitch-Góngora J; Tomazin K; Strumbelj B; Strojnik V; Feriche B
    PLoS One; 2016; 11(7):e0160401. PubMed ID: 27467760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute and Long-Term Effects of Concurrent Resistance and Swimming Training on Swimming Performance.
    Arsoniadis G; Botonis P; Bogdanis GC; Terzis G; Toubekis A
    Sports (Basel); 2022 Feb; 10(3):. PubMed ID: 35324638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined strength and endurance training in competitive swimmers.
    Aspenes S; Kjendlie PL; Hoff J; Helgerud J
    J Sports Sci Med; 2009; 8(3):357-65. PubMed ID: 24149998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective Swimmer's Action during the Grab Start Technique.
    Mourão L; de Jesus K; Roesler H; Machado LJ; Fernandes RJ; Vilas-Boas JP; Vaz MA
    PLoS One; 2015; 10(5):e0123001. PubMed ID: 25978370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Dry-Land Strength and Conditioning Programs in Age Group Swimmers.
    Amaro NM; Marinho DA; Marques MC; Batalha NP; Morouço PG
    J Strength Cond Res; 2017 Sep; 31(9):2447-2454. PubMed ID: 28825604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dry-land resistance training for competitive swimming.
    Tanaka H; Costill DL; Thomas R; Fink WJ; Widrick JJ
    Med Sci Sports Exerc; 1993 Aug; 25(8):952-9. PubMed ID: 8371657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association between the dry-land strength & power and the kick start kinetics in elite male and female swimmers.
    Santos CC; Barbosa TM; Marinho DA; Costa MJ
    Sports Biomech; 2022 Dec; ():1-11. PubMed ID: 36579929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.
    Loturco I; Barbosa AC; Nocentini RK; Pereira LA; Kobal R; Kitamura K; Abad CC; Figueiredo P; Nakamura FY
    Int J Sports Med; 2016 Mar; 37(3):211-8. PubMed ID: 26669251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Relationship Between the Lower-Body Muscular Profile and Swimming Start Performance.
    García-Ramos A; Tomazin K; Feriche B; Strojnik V; de la Fuente B; Argüelles-Cienfuegos J; Strumbelj B; Štirn I
    J Hum Kinet; 2016 Apr; 50():157-165. PubMed ID: 28149353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength.
    Nuzzo JL; McBride JM; Cormie P; McCaulley GO
    J Strength Cond Res; 2008 May; 22(3):699-707. PubMed ID: 18438251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming.
    Takeda T; Sakai S; Takagi H; Okuno K; Tsubakimoto S
    J Sports Sci; 2017 Mar; 35(6):565-571. PubMed ID: 27149652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relations between lower body isometric muscle force characteristics and start performance in elite male sprint swimmers.
    Beretić I; Durović M; Okičić T; Dopsaj M
    J Sports Sci Med; 2013; 12(4):639-45. PubMed ID: 24421722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Post-Activation Potentiation on Swimming Starts in Adolescent Swimmers.
    Georgogiannis N; Tsalis G
    J Funct Morphol Kinesiol; 2023 May; 8(2):. PubMed ID: 37218850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kinematic profile of ventral swimming start: sex diversity.
    Rudnik DM; Rejman M; Vilas-Boas JP
    Front Physiol; 2023; 14():1157359. PubMed ID: 37593236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.