These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 3366572)

  • 21. The effect and recovery of long-term H2O2 exposure on lens morphology and biochemistry.
    Cui XL; Lou MF
    Exp Eye Res; 1993 Aug; 57(2):157-67. PubMed ID: 8405182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related nuclear cataract-oxidation is the key.
    Truscott RJ
    Exp Eye Res; 2005 May; 80(5):709-25. PubMed ID: 15862178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The state of sulphydryl groups in lenses of insulin-induced hypoglycemic rats.
    Korc I; Montes JM; Osinaga E; Korc de Grodzicki B; Cayota A; Berretta JC
    Metab Pediatr Syst Ophthalmol; 1983; 7(2):81-4. PubMed ID: 6361447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiol oxidation in the crystalline lens. I. The rate-limiting role of hexokinase in aging rat and human lenses.
    Cheng HM; Chylack LT
    Invest Ophthalmol Vis Sci; 1980 May; 19(5):522-8. PubMed ID: 7372415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of pantethine and ultraviolet-B radiation on the development of lenticular opacity in the emory mouse.
    Congdon NT; West ST; Duncan DT; Fisher DT; Vitale ST; Rieger KT; Urist JT; Hazelwood DT; Sanchez AT; Pham T; Cole L; McNaughton C
    Curr Eye Res; 2000 Jan; 20(1):17-24. PubMed ID: 10611711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter.
    Cai MZ; Kuck JF; Yu NT
    Exp Eye Res; 1989 Oct; 49(4):531-41. PubMed ID: 2806422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Emory mouse cataract: changes in the beta and gamma-crystallins during aging and cataractogenesis as revealed by isoelectric focusing of the native soluble proteins.
    Barron BC; Kuck JF; Kuck KD
    Curr Eye Res; 1984 Dec; 3(12):1365-72. PubMed ID: 6525877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Free and bound SH groups in bovine lenses of different ages and in various lens parts].
    Korte I; Hockwin O; Schwarz B
    Fortschr Ophthalmol; 1984; 81(5):454-6. PubMed ID: 6500426
    [No Abstract]   [Full Text] [Related]  

  • 31. Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
    Zhang J; Yan H; Lou MF
    Exp Eye Res; 2017 Aug; 161():36-42. PubMed ID: 28579033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The early biochemical changes of cataractous lenses of rats cultured in vitro].
    Dong D; Lu A; Liu Y; Jia W; Hou W
    Zhonghua Yan Ke Za Zhi; 2000 Sep; 36(5):344-7, 21. PubMed ID: 11853625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy.
    Fris M; Tessem MB; Saether O; Midelfart A
    Acta Ophthalmol Scand; 2006 Oct; 84(5):684-92. PubMed ID: 16965502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeltaFosB-induced cataract.
    Kelz MB; Kuszak JR; Yang Y; Ma W; Steffen C; Al-Ghoul K; Zhang YJ; Chen J; Nestler EJ; Spector A
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3523-38. PubMed ID: 11006248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of curcumin on galactose-induced cataractogenesis in rats.
    Suryanarayana P; Krishnaswamy K; Reddy GB
    Mol Vis; 2003 Jun; 9():223-30. PubMed ID: 12802258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does glutathione-S-transferase dethiolate lens protein-thiol mixed disulfides?-A comparative study with thioltransferase.
    Raghavachari N; Qiao F; Lou MF
    Exp Eye Res; 1999 Jun; 68(6):715-24. PubMed ID: 10375435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cataract formation in a strain of rats selected for high oxidative stress.
    Marsili S; Salganik RI; Albright CD; Freel CD; Johnsen S; Peiffer RL; Costello MJ
    Exp Eye Res; 2004 Nov; 79(5):595-612. PubMed ID: 15500819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-bound and free UV filters in cataract lenses. The concentration of UV filters is much lower than in normal lenses.
    Korlimbinis A; Aquilina JA; Truscott RJ
    Exp Eye Res; 2007 Aug; 85(2):219-25. PubMed ID: 17574241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.