These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 33665833)
1. Diagnostic Performance of an Artificial Intelligence System in Breast Ultrasound. O'Connell AM; Bartolotta TV; Orlando A; Jung SH; Baek J; Parker KJ J Ultrasound Med; 2022 Jan; 41(1):97-105. PubMed ID: 33665833 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence in BI-RADS Categorization of Breast Lesions on Ultrasound: Can We Omit Excessive Follow-ups and Biopsies? Guldogan N; Taskin F; Icten GE; Yilmaz E; Turk EB; Erdemli S; Parlakkilic UT; Turkoglu O; Aribal E Acad Radiol; 2024 Jun; 31(6):2194-2202. PubMed ID: 38087719 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection Software for Automated Breast Ultrasound. Kwon MR; Youn I; Lee MY; Lee HA Acad Radiol; 2024 Feb; 31(2):480-491. PubMed ID: 37813703 [TBL] [Abstract][Full Text] [Related]
4. 1000-Case Reader Study of Radiologists' Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System. Xu X; Bao L; Tan Y; Zhu L; Kong F; Wang W Ultrasound Med Biol; 2018 Aug; 44(8):1694-1702. PubMed ID: 29853222 [TBL] [Abstract][Full Text] [Related]
5. Can artificial intelligence replace ultrasound as a complementary tool to mammogram for the diagnosis of the breast cancer? Mansour S; Kamal R; Hashem L; AlKalaawy B Br J Radiol; 2021 Dec; 94(1128):20210820. PubMed ID: 34613796 [TBL] [Abstract][Full Text] [Related]
6. Application of deep learning to establish a diagnostic model of breast lesions using two-dimensional grayscale ultrasound imaging. Zhang N; Li XT; Ma L; Fan ZQ; Sun YS Clin Imaging; 2021 Nov; 79():56-63. PubMed ID: 33887507 [TBL] [Abstract][Full Text] [Related]
7. Should We Ignore, Follow, or Biopsy? Impact of Artificial Intelligence Decision Support on Breast Ultrasound Lesion Assessment. Mango VL; Sun M; Wynn RT; Ha R AJR Am J Roentgenol; 2020 Jun; 214(6):1445-1452. PubMed ID: 32319794 [No Abstract] [Full Text] [Related]
8. The added value of an artificial intelligence system in assisting radiologists on indeterminate BI-RADS 0 mammograms. Yi C; Tang Y; Ouyang R; Zhang Y; Cao Z; Yang Z; Wu S; Han M; Xiao J; Chang P; Ma J Eur Radiol; 2022 Mar; 32(3):1528-1537. PubMed ID: 34528107 [TBL] [Abstract][Full Text] [Related]
9. Artificial Intelligence Applied to Breast MRI for Improved Diagnosis. Jiang Y; Edwards AV; Newstead GM Radiology; 2021 Jan; 298(1):38-46. PubMed ID: 33078996 [TBL] [Abstract][Full Text] [Related]
10. Impact of radiomics on the breast ultrasound radiologist's clinical practice: From lumpologist to data wrangler. Fleury EFC; Marcomini K Eur J Radiol; 2020 Oct; 131():109197. PubMed ID: 32795725 [TBL] [Abstract][Full Text] [Related]
11. Artificial Intelligence for Breast Cancer Screening in Mammography (AI-STREAM): A Prospective Multicenter Study Design in Korea Using AI-Based CADe/x. Chang YW; An JK; Choi N; Ko KH; Kim KH; Han K; Ryu JK J Breast Cancer; 2022 Feb; 25(1):57-68. PubMed ID: 35133093 [TBL] [Abstract][Full Text] [Related]
12. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload. Lauritzen AD; Rodríguez-Ruiz A; von Euler-Chelpin MC; Lynge E; Vejborg I; Nielsen M; Karssemeijer N; Lillholm M Radiology; 2022 Jul; 304(1):41-49. PubMed ID: 35438561 [TBL] [Abstract][Full Text] [Related]
13. Differential diagnosis of breast cancer assisted by S-Detect artificial intelligence system. Xia Q; Cheng Y; Hu J; Huang J; Yu Y; Xie H; Wang J Math Biosci Eng; 2021 Apr; 18(4):3680-3689. PubMed ID: 34198406 [TBL] [Abstract][Full Text] [Related]
14. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance. Ma S; Li Y; Yin J; Niu Q; An Z; Du L; Li F; Gu J Front Oncol; 2024; 14():1374278. PubMed ID: 38756651 [TBL] [Abstract][Full Text] [Related]
15. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist. Park HJ; Kim SM; La Yun B; Jang M; Kim B; Jang JY; Lee JY; Lee SH Medicine (Baltimore); 2019 Jan; 98(3):e14146. PubMed ID: 30653149 [TBL] [Abstract][Full Text] [Related]
16. Application of ultrasound artificial intelligence in the differential diagnosis between benign and malignant breast lesions of BI-RADS 4A. Niu S; Huang J; Li J; Liu X; Wang D; Zhang R; Wang Y; Shen H; Qi M; Xiao Y; Guan M; Liu H; Li D; Liu F; Wang X; Xiong Y; Gao S; Wang X; Zhu J BMC Cancer; 2020 Oct; 20(1):959. PubMed ID: 33008320 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence breast ultrasound and handheld ultrasound in the BI-RADS categorization of breast lesions: A pilot head to head comparison study in screening program. Huang X; Qiu Y; Bao F; Wang J; Lin C; Lin Y; Wu J; Yang H Front Public Health; 2022; 10():1098639. PubMed ID: 36743185 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence for breast ultrasound: An adjunct tool to reduce excessive lesion biopsy. Wang XY; Cui LG; Feng J; Chen W Eur J Radiol; 2021 May; 138():109624. PubMed ID: 33706046 [TBL] [Abstract][Full Text] [Related]
19. Efficiency and impact factors of anatomical intelligence for breast and hand-held ultrasound in lesion detection. Dai C; Bao L; Yan H; Zhu L; Xu X; Tan Y; Yu L; Yang J; Jiang C; Shen Y J Clin Ultrasound; 2023; 51(6):1039-1047. PubMed ID: 37096417 [TBL] [Abstract][Full Text] [Related]
20. Differing benefits of artificial intelligence-based computer-aided diagnosis for breast US according to workflow and experience level. Lee SE; Han K; Youk JH; Lee JE; Hwang JY; Rho M; Yoon J; Kim EK; Yoon JH Ultrasonography; 2022 Oct; 41(4):718-727. PubMed ID: 35850498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]