BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 33665834)

  • 1. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide.
    Goyal V; Jhanghel D; Mehrotra S
    Physiol Plant; 2021 Apr; 171(4):896-908. PubMed ID: 33665834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment.
    Paul S; Roychoudhury A
    Physiol Plant; 2020 Feb; 168(2):374-393. PubMed ID: 31479515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions.
    Singh S; Kumar V; Kapoor D; Kumar S; Singh S; Dhanjal DS; Datta S; Samuel J; Dey P; Wang S; Prasad R; Singh J
    Physiol Plant; 2020 Feb; 168(2):301-317. PubMed ID: 31264712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulphide (H
    Mathur P; Roy S; Nasir Khan M; Mukherjee S
    Plant Biol (Stuttg); 2022 Jun; 24(4):559-568. PubMed ID: 35334141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress.
    Sharma G; Sharma N; Ohri P
    Nitric Oxide; 2024 Mar; 144():1-10. PubMed ID: 38185242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress.
    Pandey AK; Gautam A
    Physiol Plant; 2020 Feb; 168(2):511-525. PubMed ID: 31916586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress.
    Srivastava V; Chowdhary AA; Verma PK; Mehrotra S; Mishra S
    Physiol Plant; 2022 Jan; 174(1):e13633. PubMed ID: 35060139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses.
    Singh A; Rajput VD; Lalotra S; Agrawal S; Ghazaryan K; Singh J; Minkina T; Rajput P; Mandzhieva S; Alexiou A
    Environ Geochem Health; 2024 Apr; 46(5):148. PubMed ID: 38578547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide: an emerging component against abiotic stress in plants.
    Raza A; Tabassum J; Mubarik MS; Anwar S; Zahra N; Sharif Y; Hafeez MB; Zhang C; Corpas FJ; Chen H
    Plant Biol (Stuttg); 2022 Jun; 24(4):540-558. PubMed ID: 34870354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in
    Antoniou C; Xenofontos R; Chatzimichail G; Christou A; Kashfi K; Fotopoulos V
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture.
    Gupta A; Mishra R; Rai S; Bano A; Pathak N; Fujita M; Kumar M; Hasanuzzaman M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen sulphide signalling in plant response to abiotic stress.
    Zhao R; Yin K; Chen S
    Plant Biol (Stuttg); 2022 Jun; 24(4):523-531. PubMed ID: 34837449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response.
    Lim CW; Lim S; Baek W; Lee SC
    Physiol Plant; 2015 Aug; 154(4):526-42. PubMed ID: 25302464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism.
    Ghosh UK; Islam MN; Siddiqui MN; Khan MAR
    Plant Signal Behav; 2021 Aug; 16(8):1913306. PubMed ID: 34134596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants.
    Kerchev P; van der Meer T; Sujeeth N; Verlee A; Stevens CV; Van Breusegem F; Gechev T
    Biotechnol Adv; 2020; 40():107503. PubMed ID: 31901371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants.
    Thakur M; Anand A
    Physiol Plant; 2021 Jun; 172(2):1227-1243. PubMed ID: 33860955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance.
    Bhagat N; Raghav M; Dubey S; Bedi N
    J Microbiol Biotechnol; 2021 Aug; 31(8):1045-1059. PubMed ID: 34226402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic Expression of
    Zheng J; Lin R; Pu L; Wang Z; Mei Q; Zhang M; Jian S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33429984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.