These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 33665849)

  • 1. Different response modes and cooperation modulations of blue-light receptors in photomorphogenesis.
    Wu Y; Wang Q; Qu J; Liu W; Gao X; Li X; Ouyang X; Lin C; Shuai J
    Plant Cell Environ; 2021 Jun; 44(6):1802-1815. PubMed ID: 33665849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis.
    Zuo Z; Liu H; Liu B; Liu X; Lin C
    Curr Biol; 2011 May; 21(10):841-7. PubMed ID: 21514160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2.
    Zuo ZC; Meng YY; Yu XH; Zhang ZL; Feng DS; Sun SF; Liu B; Lin CT
    Mol Plant; 2012 May; 5(3):726-33. PubMed ID: 22311776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoexcited Cryptochrome2 Interacts Directly with TOE1 and TOE2 in Flowering Regulation.
    Du SS; Li L; Li L; Wei X; Xu F; Xu P; Wang W; Xu P; Cao X; Miao L; Guo T; Wang S; Mao Z; Yang HQ
    Plant Physiol; 2020 Sep; 184(1):487-505. PubMed ID: 32661061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoregulatory protein kinases fine-tune plant photomorphogenesis by directing a bifunctional phospho-code on HY5 in Arabidopsis.
    Zhang N; Wei CQ; Xu DJ; Deng ZP; Zhao YC; Ai LF; Sun Y; Wang ZY; Zhang SW
    Dev Cell; 2024 Jul; 59(13):1737-1749.e7. PubMed ID: 38677285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2.
    Wang Q; Barshop WD; Bian M; Vashisht AA; He R; Yu X; Liu B; Nguyen P; Liu X; Zhao X; Wohlschlegel JA; Lin C
    Mol Plant; 2015 Apr; 8(4):631-43. PubMed ID: 25792146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes.
    Liu Q; Su T; He W; Ren H; Liu S; Chen Y; Gao L; Hu X; Lu H; Cao S; Huang Y; Wang X; Wang Q; Lin C
    Mol Plant; 2020 Mar; 13(3):398-413. PubMed ID: 31953223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual-action mechanism of Arabidopsis cryptochromes.
    Qu GP; Jiang B; Lin C
    J Integr Plant Biol; 2024 May; 66(5):883-896. PubMed ID: 37902426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis.
    Zhao QP; Zhu JD; Li NN; Wang XN; Zhao X; Zhang X
    J Integr Plant Biol; 2020 May; 62(5):614-630. PubMed ID: 30941890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis.
    Chen L; Ruan J; Li Y; Liu M; Liu Y; Guan Y; Mao Z; Wang W; Yang HQ; Guo T
    Biochem Biophys Res Commun; 2024 Jul; 717():150050. PubMed ID: 38718571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
    Li X; Wang Q; Yu X; Liu H; Yang H; Zhao C; Liu X; Tan C; Klejnot J; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20844-9. PubMed ID: 22139370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The action mechanisms of plant cryptochromes.
    Liu H; Liu B; Zhao C; Pepper M; Lin C
    Trends Plant Sci; 2011 Dec; 16(12):684-91. PubMed ID: 21983106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.
    Boccalandro HE; Giordano CV; Ploschuk EL; Piccoli PN; Bottini R; Casal JJ
    Plant Physiol; 2012 Mar; 158(3):1475-84. PubMed ID: 22147516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in
    Jiang B; Zhong Z; Su J; Zhu T; Yueh T; Bragasin J; Bu V; Zhou C; Lin C; Wang X
    Sci Adv; 2023 Aug; 9(32):eadh4048. PubMed ID: 37556549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression.
    Fankhauser C; Ulm R
    Genes Dev; 2011 May; 25(10):1004-9. PubMed ID: 21576261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks.
    Chen L; Liu M; Li Y; Guan Y; Ruan J; Mao Z; Wang W; Yang HQ; Guo T
    Biochem Biophys Res Commun; 2024 Sep; 724():150233. PubMed ID: 38865814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue light perceiving CRY proteins: protecting plants from DNA damage.
    Gahlowt P; Tripathi DK; Singh SP; Gupta R; Singh VP
    Plant Cell Rep; 2024 Jun; 43(6):161. PubMed ID: 38829395
    [No Abstract]   [Full Text] [Related]  

  • 18. Light-activated protein interaction with high spatial subcellular confinement.
    Benedetti L; Barentine AES; Messa M; Wheeler H; Bewersdorf J; De Camilli P
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2238-E2245. PubMed ID: 29463750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural view of plant CRY2 photoactivation and inactivation.
    Wang Q; Lin C
    Nat Struct Mol Biol; 2020 May; 27(5):401-403. PubMed ID: 32398828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human cryptochrome exhibits light-dependent magnetosensitivity.
    Foley LE; Gegear RJ; Reppert SM
    Nat Commun; 2011 Jun; 2():356. PubMed ID: 21694704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.