These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33665904)

  • 1. Predicting the risk of developing type 2 diabetes in Chinese people who have coronary heart disease and impaired glucose tolerance.
    Xu S; Scott CAB; Coleman RL; Tuomilehto J; Holman RR
    J Diabetes; 2021 Oct; 13(10):817-826. PubMed ID: 33665904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Acarbose on Incident Diabetes and Regression to Normoglycemia in People With Coronary Heart Disease and Impaired Glucose Tolerance: Insights From the ACE Trial.
    Gerstein HC; Coleman RL; Scott CAB; Xu S; Tuomilehto J; Rydén L; Holman RR;
    Diabetes Care; 2020 Sep; 43(9):2242-2247. PubMed ID: 32641379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting heart failure events in patients with coronary heart disease and impaired glucose tolerance: Insights from the Acarbose Cardiovascular Evaluation (ACE) trial.
    Wamil M; McMurray JJV; Scott CAB; Coleman RL; Sun Y; Standl E; Rydén L; Holman RR
    Diabetes Res Clin Pract; 2020 Dec; 170():108488. PubMed ID: 33035598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study.
    Hippisley-Cox J; Coupland C
    BMJ; 2017 Nov; 359():j5019. PubMed ID: 29158232
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial.
    Holman RR; Coleman RL; Chan JCN; Chiasson JL; Feng H; Ge J; Gerstein HC; Gray R; Huo Y; Lang Z; McMurray JJ; Rydén L; Schröder S; Sun Y; Theodorakis MJ; Tendera M; Tucker L; Tuomilehto J; Wei Y; Yang W; Wang D; Hu D; Pan C;
    Lancet Diabetes Endocrinol; 2017 Nov; 5(11):877-886. PubMed ID: 28917545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk prediction models for incident type 2 diabetes in Chinese people with intermediate hyperglycemia: a systematic literature review and external validation study.
    Xu S; Coleman RL; Wan Q; Gu Y; Meng G; Song K; Shi Z; Xie Q; Tuomilehto J; Holman RR; Niu K; Tong N
    Cardiovasc Diabetol; 2022 Sep; 21(1):182. PubMed ID: 36100925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired glucose tolerance, but not impaired fasting glucose, is associated with increased levels of coronary heart disease risk factors: results from the Baltimore Longitudinal Study on Aging.
    Blake DR; Meigs JB; Muller DC; Najjar SS; Andres R; Nathan DM
    Diabetes; 2004 Aug; 53(8):2095-100. PubMed ID: 15277391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic predictors of impaired glucose tolerance and type 2 diabetes in a predisposed population--A prospective cohort study.
    Henninger J; Hammarstedt A; Rawshani A; Eliasson B
    BMC Endocr Disord; 2015 Sep; 15():51. PubMed ID: 26407933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive risk factors for deterioration from normoglycemic state to type 2 diabetes mellitus or impaired glucose tolerance in a Tunisian urban population.
    Chihaoui M; Kanoun F; Ben Rehaiem B; Ben Brahim S; Ftouhi B; Mekaouar A; Fekih M; Mbazâd A; Zouari B; Ben Khalifa F
    Diabetes Metab; 2001 Sep; 27(4 Pt 1):487-95. PubMed ID: 11547223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of acarbose on carotid intima-media thickness in patients with newly diagnosed impaired glucose tolerance or mild type 2 diabetes mellitus: A one-year, prospective, randomized, open-label, parallel-group study in Japanese adults with established coronary artery disease.
    Koyasu M; Ishii H; Watarai M; Takemoto K; Inden Y; Takeshita K; Amano T; Yoshikawa D; Matsubara T; Murohara T
    Clin Ther; 2010 Aug; 32(9):1610-7. PubMed ID: 20974318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): an occupational cohort study in Brazil.
    Schmidt MI; Bracco PA; Yudkin JS; Bensenor IM; Griep RH; Barreto SM; Castilhos CD; Duncan BB
    Lancet Diabetes Endocrinol; 2019 Apr; 7(4):267-277. PubMed ID: 30803929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identical anthropometric characteristics of impaired fasting glucose combined with impaired glucose tolerance and newly diagnosed type 2 diabetes: anthropometric indicators to predict hyperglycaemia in a community-based prospective cohort study in southwest China.
    Zhang F; Wan Q; Cao H; Tang L; Li D; Lü Q; Yan Z; Li J; Yang Q; Zhang Y; Tong N
    BMJ Open; 2018 May; 8(5):e019735. PubMed ID: 29743321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of Prediabetes Among Adolescents and Young Adults in the United States, 2005-2016.
    Andes LJ; Cheng YJ; Rolka DB; Gregg EW; Imperatore G
    JAMA Pediatr; 2020 Feb; 174(2):e194498. PubMed ID: 31790544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fasting, non-fasting glucose and HDL dysfunction in risk of pre-diabetes, diabetes, and coronary disease in non-diabetic adults.
    Onat A; Can G; Çiçek G; Ayhan E; Doğan Y; Kaya H
    Acta Diabetol; 2013 Aug; 50(4):519-28. PubMed ID: 21769500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward targeted prevention: risk factors for prediabetes defined by impaired fasting glucose, impaired glucose tolerance and increased HbA1c in the population-based KORA study from Germany.
    Greiner GG; Emmert-Fees KMF; Becker J; Rathmann W; Thorand B; Peters A; Quante AS; Schwettmann L; Laxy M
    Acta Diabetol; 2020 Dec; 57(12):1481-1491. PubMed ID: 32748175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic Accuracies of Glycated Hemoglobin, Fructosamine, and Homeostasis Model Assessment of Insulin Resistance in Predicting Impaired Fasting Glucose, Impaired Glucose Tolerance, or New Onset Diabetes After Transplantation.
    Rosettenstein K; Viecelli A; Yong K; Nguyen HD; Chakera A; Chan D; Dogra G; Lim EM; Wong G; Lim WH
    Transplantation; 2016 Jul; 100(7):1571-9. PubMed ID: 26437275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acarbose on cardiovascular events and new-onset diabetes in patients with coronary heart disease and impaired glucose tolerance.
    Wei Y; Xu W
    Future Cardiol; 2019 Mar; 15(2):127-133. PubMed ID: 30793928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-specific prevalence of coronary heart disease among Tehranian adult population across different glycemic status: Tehran lipid and glucose study, 2008-2011.
    Moazzeni SS; Ghafelehbashi H; Hasheminia M; Parizadeh D; Ghanbarian A; Azizi F; Hadaegh F
    BMC Public Health; 2020 Oct; 20(1):1510. PubMed ID: 33023566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease.
    Nathanson D; Zethelius B; Berne C; Holst JJ; Sjöholm A; Nyström T
    Diabetologia; 2010 Feb; 53(2):277-80. PubMed ID: 19936703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the effects of acarbose on glucose metabolism in patients predisposed to developing diabetes: the Dutch acarbose intervention study in persons with impaired glucose tolerance (DAISI).
    Nijpels G; Boorsma W; Dekker JM; Kostense PJ; Bouter LM; Heine RJ
    Diabetes Metab Res Rev; 2008; 24(8):611-6. PubMed ID: 18756586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.