These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33665936)

  • 1. Target localization during respiration motion based on LSTM: A pilot study on robotic puncture system.
    Ma Y; Yang Z; Wu W; Xie H; Gu L
    Int J Med Robot; 2021 Jun; 17(3):e2247. PubMed ID: 33665936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy.
    Wang G; Li Z; Li G; Dai G; Xiao Q; Bai L; He Y; Liu Y; Bai S
    Radiat Oncol; 2021 Jan; 16(1):13. PubMed ID: 33446245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CT-guided robotic needle puncture method for lung tumours with respiratory motion.
    Wei L; Jiang S; Yang Z; Zhang G; Ma L
    Phys Med; 2020 May; 73():48-56. PubMed ID: 32315807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robotic system for transthoracic puncture of pulmonary nodules based on gated respiratory compensation.
    Li D; Mao Y; Tu P; Shi H; Sun W; Zhao D; Chen C; Chen X
    Comput Methods Programs Biomed; 2024 Feb; 244():107995. PubMed ID: 38157826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online advance respiration prediction model for percutaneous puncture robotics.
    Lin Y; Guo J; Yang X; Xu W; Li Z
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):383-394. PubMed ID: 38070074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards real-time respiratory motion prediction based on long short-term memory neural networks.
    Lin H; Shi C; Wang B; Chan MF; Tang X; Ji W
    Phys Med Biol; 2019 Apr; 64(8):085010. PubMed ID: 30917344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring.
    Cho B; Suh Y; Dieterich S; Keall PJ
    Phys Med Biol; 2008 Jun; 53(11):2837-55. PubMed ID: 18460750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LGEANet: LSTM-global temporal convolution-external attention network for respiratory motion prediction.
    Zhang K; Yu J; Liu J; Li Q; Jin S; Su Z; Xu X; Dai Z; Wang X; Zhang H
    Med Phys; 2023 Apr; 50(4):1975-1989. PubMed ID: 36688628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel external/internal tumor tracking approach to compensate for respiratory motion baseline drifts.
    Giżyńska MK; Seppenwoolde Y; Kilby W; Heijmen BJ
    Phys Med Biol; 2023 Mar; 68(5):. PubMed ID: 36753764
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of a multileaf collimator tracking system and a robotic treatment couch tracking system for organ motion compensation during radiotherapy.
    Menten MJ; Guckenberger M; Herrmann C; Krauß A; Nill S; Oelfke U; Wilbert J
    Med Phys; 2012 Nov; 39(11):7032-41. PubMed ID: 23127094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple closed-loops robotic calibration for accurate surgical puncture.
    Zheng L; Zhang Z; Wang Z; Bao K; Yang L; Yan B; Yan Z; Ye W; Yang R
    Int J Med Robot; 2021 Jun; 17(3):e2242. PubMed ID: 33591646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-guided needle insertion robotic system for percutaneous puncture.
    Chen S; Wang F; Lin Y; Shi Q; Wang Y
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):475-484. PubMed ID: 33484429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. respiTrack: Patient-specific real-time respiratory tumor motion prediction using magnetic tracking.
    Özbek Y; Bárdosi Z; Freysinger W
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):953-962. PubMed ID: 32347464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robotic puncture system with optical and mechanical feedback under respiratory motion.
    Zhang W; Bao K; Zheng L; Cai L; Yan B; Yang R
    Int J Med Robot; 2022 Aug; 18(4):e2403. PubMed ID: 35384266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of respiratory phase shifts on motion-tracking accuracy of the CyberKnife Synchrony™ Respiratory Tracking System.
    Akino Y; Shiomi H; Sumida I; Isohashi F; Seo Y; Suzuki O; Tamari K; Otani K; Higashinaka N; Hayashida M; Mabuchi N; Ogawa K
    Med Phys; 2019 Sep; 46(9):3757-3766. PubMed ID: 30943311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using an external surrogate for predictor model training in real-time motion management of lung tumors.
    Rottmann J; Berbeco R
    Med Phys; 2014 Dec; 41(12):121706. PubMed ID: 25471953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An autotuning respiration compensation system based on ultrasound image tracking.
    Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF
    J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance and admittance control for respiratory-motion compensation during robotic needle insertion - a preliminary test.
    Kim YJ; Seo JH; Kim HR; Kim KG
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 27915466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study.
    Seppenwoolde Y; Berbeco RI; Nishioka S; Shirato H; Heijmen B
    Med Phys; 2007 Jul; 34(7):2774-84. PubMed ID: 17821984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.