These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33665946)

  • 1. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin.
    Chen D; Cui X; Chen H
    Microsc Res Tech; 2021 Aug; 84(8):1862-1872. PubMed ID: 33665946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Ablating Biomimetic Periodic Array Fish Scale Surface for Drag Reduction.
    Chen D; Zhang B; Zhang H; Shangguan Z; Sun C; Cui X; Liu X; Zhao Z; Liu G; Chen H
    Biomimetics (Basel); 2024 Jul; 9(7):. PubMed ID: 39056856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales.
    Wu L; Jiao Z; Song Y; Liu C; Wang H; Yan Y
    Sci Rep; 2018 Aug; 8(1):12186. PubMed ID: 30111771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
    Dean B; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamics and energy-saving swimming techniques of Pacific bluefin tuna.
    Takagi T; Tamura Y; Weihs D
    J Theor Biol; 2013 Nov; 336():158-72. PubMed ID: 23907027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the drag reduction property of puffer (Takifugu flavidus) spinal nonsmooth structure surface.
    Zhou H; Liu C; Tian G; Feng X; Jia C
    Microsc Res Tech; 2020 Jul; 83(7):795-803. PubMed ID: 32144850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles.
    Wainwright DK; Lauder GV
    Bioinspir Biomim; 2020 Mar; 15(3):035007. PubMed ID: 32053798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drag reduction using bionic groove surface for underwater vehicles.
    Zheng S; Liang X; Li J; Liu Y; Tang J
    Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898
    [No Abstract]   [Full Text] [Related]  

  • 11. Rheological Properties and Drag Reduction Performance of Puffer Epidermal Mucus.
    Zhang Y; Feng X; Tian G; Jia C
    ACS Biomater Sci Eng; 2022 Feb; 8(2):460-469. PubMed ID: 35077127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
    Polidori G; Taïar R; Fohanno S; Mai TH; Lodini A
    J Biomech; 2006; 39(13):2535-41. PubMed ID: 16153653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics of fossil fishes.
    Fletcher T; Altringham J; Peakall J; Wignall P; Dorrell R
    Proc Biol Sci; 2014 Aug; 281(1788):20140703. PubMed ID: 24943377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of passive drag in swimming by numerical simulation and analytical procedure.
    Barbosa TM; Ramos R; Silva AJ; Marinho DA
    J Sports Sci; 2018 Mar; 36(5):492-498. PubMed ID: 28453398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
    Martin S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic research on
    Wu L; Luo G; He F; Chen L; Wang S; Fan X
    RSC Adv; 2022 Aug; 12(34):22226-22235. PubMed ID: 36091191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the structural and mechanical properties of pinecone fish (Monocentris japonica) scales.
    Guo M; Wu S; Zhao J; Zhuang J; Wu Q
    Microsc Res Tech; 2023 May; 86(5):589-599. PubMed ID: 36715138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slime-Groove Drag Reduction Characteristics and Mechanism of Marine Biomimetic Surface.
    Yan M; Gu Y; Ma L; Tang J; He C; Zhang J; Mou J
    Appl Bionics Biomech; 2022; 2022():4485365. PubMed ID: 35321354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities.
    Qin L; Hafezi M; Yang H; Dong G; Zhang Y
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31340477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.