These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33666235)

  • 1. Metabolomics-driven gene mining and genetic improvement of tolerance to salt-induced osmotic stress in maize.
    Liang X; Liu S; Wang T; Li F; Cheng J; Lai J; Qin F; Li Z; Wang X; Jiang C
    New Phytol; 2021 Jun; 230(6):2355-2370. PubMed ID: 33666235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associating primary and specialized metabolism with salt induced osmotic stress tolerance in maize.
    Fernie AR
    New Phytol; 2021 Jun; 230(6):2091-2093. PubMed ID: 33880794
    [No Abstract]   [Full Text] [Related]  

  • 3. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.).
    Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B
    Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel.
    Zhang X; Warburton ML; Setter T; Liu H; Xue Y; Yang N; Yan J; Xiao Y
    Theor Appl Genet; 2016 Aug; 129(8):1449-63. PubMed ID: 27121008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding.
    Lamari N; Zhendre V; Urrutia M; Bernillon S; Maucourt M; Deborde C; Prodhomme D; Jacob D; Ballias P; Rolin D; Sellier H; Rabier D; Gibon Y; Giauffret C; Moing A
    Metabolomics; 2018 Sep; 14(10):132. PubMed ID: 30830438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize.
    Sandhu D; Pudussery MV; Kumar R; Pallete A; Markley P; Bridges WC; Sekhon RS
    Funct Integr Genomics; 2020 Mar; 20(2):261-275. PubMed ID: 31522293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings.
    Luo X; Wang B; Gao S; Zhang F; Terzaghi W; Dai M
    J Integr Plant Biol; 2019 Jun; 61(6):658-674. PubMed ID: 30803125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na
    Zhang M; Cao Y; Wang Z; Wang ZQ; Shi J; Liang X; Song W; Chen Q; Lai J; Jiang C
    New Phytol; 2018 Feb; 217(3):1161-1176. PubMed ID: 29139111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance.
    Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K
    Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using High-Throughput Phenotyping Analysis to Decipher the Phenotypic Components and Genetic Architecture of Maize Seedling Salt Tolerance.
    Guo S; Lv L; Zhao Y; Wang J; Lu X; Zhang M; Wang R; Zhang Y; Guo X
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combination of a Genome-Wide Association Study and a Transcriptome Analysis Reveals circRNAs as New Regulators Involved in the Response to Salt Stress in Maize.
    Liu P; Zhu Y; Liu H; Liang Z; Zhang M; Zou C; Yuan G; Gao S; Pan G; Shen Y; Ma L
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress.
    Zhang X; Wang H; Yang M; Liu R; Zhang X; Jia Z; Li P
    BMC Plant Biol; 2023 Aug; 23(1):392. PubMed ID: 37580686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The classical SOS pathway confers natural variation of salt tolerance in maize.
    Zhou X; Li J; Wang Y; Liang X; Zhang M; Lu M; Guo Y; Qin F; Jiang C
    New Phytol; 2022 Oct; 236(2):479-494. PubMed ID: 35633114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation and domestication selection of
    Zhang X; Zhu T; Li Z; Jia Z; Wang Y; Liu R; Yang M; Chen QB; Wang Z; Guo S; Li P
    Front Plant Sci; 2022; 13():992799. PubMed ID: 36388478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic mapping with testcrossing associations and F
    Yan J; Wu Y; Li W; Qin X; Wang Y; Yue B
    Sci Rep; 2017 Jun; 7(1):3232. PubMed ID: 28607429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance.
    Richter JA; Erban A; Kopka J; Zörb C
    Plant Sci; 2015 Apr; 233():107-115. PubMed ID: 25711818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.
    Xiang Y; Sun X; Gao S; Qin F; Dai M
    Mol Plant; 2017 Mar; 10(3):456-469. PubMed ID: 27746300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.
    Yamasaki M; Tenaillon MI; Bi IV; Schroeder SG; Sanchez-Villeda H; Doebley JF; Gaut BS; McMullen MD
    Plant Cell; 2005 Nov; 17(11):2859-72. PubMed ID: 16227451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement.
    Li K; Wen W; Alseekh S; Yang X; Guo H; Li W; Wang L; Pan Q; Zhan W; Liu J; Li Y; Wu X; Brotman Y; Willmitzer L; Li J; Fernie AR; Yan J
    Plant J; 2019 Jul; 99(2):216-230. PubMed ID: 30888713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.