BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33666425)

  • 1. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Residual Nonaqueous-Phase Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances.
    Liao S; Arshadi M; Woodcock MJ; Saleeba ZSSL; Pinchbeck D; Liu C; Cápiro NL; Abriola LM; Pennell KD
    Environ Sci Technol; 2022 Jun; 56(12):7976-7985. PubMed ID: 35675453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.
    Brusseau ML
    Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of aqueous film forming foams on the solubility and mobilization of non-aqueous phase liquid contaminants in quartz sands.
    Liao S; Saleeba Z; Bryant JD; Abriola LM; Pennell KD
    Water Res; 2021 May; 195():116975. PubMed ID: 33677241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Film-Forming Foams Exhibit Greater Interfacial Activity than PFOA, PFOS, or FOSA.
    Costanza J; Abriola LM; Pennell KD
    Environ Sci Technol; 2020 Nov; 54(21):13590-13597. PubMed ID: 32965107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances.
    Brusseau ML
    Environ Pollut; 2019 Nov; 254(Pt B):113102. PubMed ID: 31491699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances.
    Brusseau ML; Guo B
    Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of NAPL distribution on the transport of PFOS in Co-contaminated media.
    Liu H; Guo Z; Zhu Y; Van Glubt S; Brusseau ML
    J Hazard Mater; 2024 Jan; 462():132794. PubMed ID: 37862902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone.
    Silva JAK; Martin WA; Johnson JL; McCray JE
    J Contam Hydrol; 2019 Jun; 223():103472. PubMed ID: 30979513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media.
    Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X
    Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.
    Lyu Y; Brusseau ML; Chen W; Yan N; Fu X; Lin X
    Environ Sci Technol; 2018 Jul; 52(14):7745-7753. PubMed ID: 29944343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon.
    Hakimabadi SG; Taylor A; Pham AL
    Water Res; 2023 Aug; 242():120212. PubMed ID: 37336180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced aggregation and interfacial adsorption of an aqueous film forming foam (AFFF) in high salinity matrices.
    Steffens SD; Sedlak DL; Alvarez-Cohen L
    Environ Sci Process Impacts; 2023 Dec; 25(12):2181-2188. PubMed ID: 37990920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.