These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33666430)

  • 1. Time-Resolved Observation of Hole Tunneling in van der Waals Multilayer Heterostructures.
    Li Y; Zhang L; Chang J; Cui Q; Zhao H
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12425-12431. PubMed ID: 33666430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.
    Ceballos F; Bellus MZ; Chiu HY; Zhao H
    ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers.
    Li Y; Cui Q; Ceballos F; Lane SD; Qi Z; Zhao H
    Nano Lett; 2017 Nov; 17(11):6661-6666. PubMed ID: 29064255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-Coupled States Facilitate Ultrafast Charge Transfer in a Transition Metal Dichalcogenide Trilayer Heterostructure.
    Zereshki P; Wei Y; Long R; Zhao H
    J Phys Chem Lett; 2018 Oct; 9(20):5970-5978. PubMed ID: 30257564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Energy Transfer in In
    He J; Li T; Zhang L; He D; Wang Y; Ding H; Pan N; Zhao H
    ACS Omega; 2018 Sep; 3(9):11930-11936. PubMed ID: 31459277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors.
    Ceballos F; Ju MG; Lane SD; Zeng XC; Zhao H
    Nano Lett; 2017 Mar; 17(3):1623-1628. PubMed ID: 28212486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Observation of Quasi-Ballistic Transport of Electrons in Graphene.
    Scott RJ; Valencia-Acuna P; Zhao H
    ACS Nano; 2023 Dec; 17(24):25368-25376. PubMed ID: 38091261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-Dependent Interlayer Charge Transfer in MoSe
    Zheng T; Valencia-Acuna P; Zereshki P; Beech KM; Deng L; Ni Z; Zhao H
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6489-6495. PubMed ID: 33522222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing and Manipulating Carrier Interlayer Diffusion in van der Waals Multilayer by Constructing Type-I Heterostructure.
    Zheng W; Zheng B; Jiang Y; Yan C; Chen S; Liu Y; Sun X; Zhu C; Qi Z; Yang T; Huang W; Fan P; Jiang F; Wang X; Zhuang X; Li D; Li Z; Xie W; Ji W; Wang X; Pan A
    Nano Lett; 2019 Oct; 19(10):7217-7225. PubMed ID: 31545057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient hole transfer from monolayer WS
    Bellus MZ; Yang Z; Zereshki P; Hao J; Lau SP; Zhao H
    Nanoscale Horiz; 2019 Jan; 4(1):236-242. PubMed ID: 32254162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-area single-layer MoSe2 and its van der Waals heterostructures.
    Shim GW; Yoo K; Seo SB; Shin J; Jung DY; Kang IS; Ahn CW; Cho BJ; Choi SY
    ACS Nano; 2014 Jul; 8(7):6655-62. PubMed ID: 24987802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient absorption measurements of interlayer charge transfer in a WS
    Deng L; Yuan W; He D; Liu S; Du Y; Gong L; Liu H
    Phys Chem Chem Phys; 2021 Aug; 23(32):17259-17264. PubMed ID: 34346436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing effect of electric field on photocarrier transfer in graphene-WS
    He J; He D; Wang Y; Zhao H
    Opt Express; 2017 Feb; 25(3):1949-1957. PubMed ID: 29519044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-Optic Upconversion in van der Waals Heterostructures via Nonequilibrium Photocarrier Tunneling.
    Linardy E; Trushin M; Watanabe K; Taniguchi T; Eda G
    Adv Mater; 2020 Jul; 32(29):e2001543. PubMed ID: 32538523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling van der Waals epitaxy: A real-time in-situ study of MoSe2 growth on graphene/Ru(0001).
    Buß L; Braud N; Ewert M; Jugovac M; Menteş TO; Locatelli A; Falta J; Flege JI
    Ultramicroscopy; 2023 Aug; 250():113749. PubMed ID: 37186986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical switching between exciton dissociation to exciton funneling in MoSe
    Meng Y; Wang T; Jin C; Li Z; Miao S; Lian Z; Taniguchi T; Watanabe K; Song F; Shi SF
    Nat Commun; 2020 May; 11(1):2640. PubMed ID: 32457328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Interlayer Exciton in WS
    Ma X; Fu S; Ding J; Liu M; Bian A; Hong F; Sun J; Zhang X; Yu X; He D
    Nano Lett; 2021 Oct; 21(19):8035-8042. PubMed ID: 34605657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double Indirect Interlayer Exciton in a MoSe
    Hanbicki AT; Chuang HJ; Rosenberger MR; Hellberg CS; Sivaram SV; McCreary KM; Mazin II; Jonker BT
    ACS Nano; 2018 May; 12(5):4719-4726. PubMed ID: 29727170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trion-Mediated Förster Resonance Energy Transfer and Optical Gating Effect in WS
    Hu Z; Hernández-Martínez PL; Liu X; Amara MR; Zhao W; Watanabe K; Taniguchi T; Demir HV; Xiong Q
    ACS Nano; 2020 Oct; 14(10):13470-13477. PubMed ID: 32966063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.