BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33666613)

  • 1. Near-infrared fluorescent probe for evaluating the acetylcholinesterase effect in the aging process and dietary restriction via fluorescence imaging.
    He N; Yu L; Xu M; Huang Y; Wang X; Chen L; Yue S
    J Mater Chem B; 2021 Mar; 9(11):2623-2630. PubMed ID: 33666613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Acetylcholinesterase in Stress-Induced Depression Phenotypes by Two-Photon Fluorescence Imaging in the Mouse Brain.
    Wang X; Li P; Ding Q; Wu C; Zhang W; Tang B
    J Am Chem Soc; 2019 Feb; 141(5):2061-2068. PubMed ID: 30638380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A selective and sensitive near-infrared fluorescent probe for acetylcholinesterase imaging.
    Chao S; Krejci E; Bernard V; Leroy J; Jean L; Renard PY
    Chem Commun (Camb); 2016 Oct; 52(77):11599-602. PubMed ID: 27604478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Fluorescence Probe for Evaluating Acetylcholinesterase Activity in PC12 Cells and In Situ Tracing AChE Distribution in Zebrafish.
    Ma J; Si T; Yan C; Li Y; Li Q; Lu X; Guo Y
    ACS Sens; 2020 Jan; 5(1):83-92. PubMed ID: 31875385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-dependent modulation of fasting and long-term dietary restriction on acetylcholinesterase in non-neuronal tissues of mice.
    Suchiang K; Sharma R
    Mol Cell Biochem; 2016 Aug; 419(1-2):135-45. PubMed ID: 27379505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of the Elevation of Cholinesterase Activity in Brain Glioma by a Near-Infrared Emission Chemsensor.
    Ma Y; Gao W; Ma S; Liu Y; Lin W
    Anal Chem; 2020 Oct; 92(19):13405-13410. PubMed ID: 32864956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Fluorescence Probe for Specific Detection of Acetylcholinesterase and Imaging in Live Cells and Zebrafish.
    Fortibui MM; Jang M; Lee S; Ryoo IJ; Ahn JS; Ko SK; Kim J
    ACS Appl Bio Mater; 2022 May; 5(5):2232-2239. PubMed ID: 35446530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe.
    Li S; Song D; Huang W; Li Z; Liu Z
    Anal Chem; 2020 Feb; 92(3):2802-2808. PubMed ID: 31903746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An activator-induced quencher-detachment-based turn-on probe with a cationic substrate moiety for acetylcholinesterase.
    Oe M; Miki K; Masuda A; Nogita K; Ohe K
    Chem Commun (Camb); 2022 Feb; 58(10):1510-1513. PubMed ID: 34874369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Probe for Fluorescence Detection of the Acetylcholinesterase Activity Based on Molecularly Imprinted Polymers Coated Carbon Dots.
    Jia Z; Luo Y; Wen H; Huang S; Du X; Xue W
    Chem Pharm Bull (Tokyo); 2019 Aug; 67(8):795-800. PubMed ID: 31061298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary restriction regulates brain acetylcholinesterase in female mice as a function of age.
    Suchiang K; Sharma R
    Biogerontology; 2011 Dec; 12(6):581-9. PubMed ID: 21870149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PET probes for imaging brain acetylcholinesterase.
    Kikuchi T; Okamura T; Zhang MR; Irie T
    J Labelled Comp Radiopharm; 2013; 56(3-4):172-9. PubMed ID: 24285323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase.
    Farar V; Mohr F; Legrand M; Lamotte d'Incamps B; Cendelin J; Leroy J; Abitbol M; Bernard V; Baud F; Fournet V; Houze P; Klein J; Plaud B; Tuma J; Zimmermann M; Ascher P; Hrabovska A; Myslivecek J; Krejci E
    J Neurochem; 2012 Sep; 122(5):1065-80. PubMed ID: 22747514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A naked-eye visible and fluorescence "turn-on" probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells.
    Cui K; Chen Z; Wang Z; Zhang G; Zhang D
    Analyst; 2011 Jan; 136(1):191-5. PubMed ID: 20927440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel turn-on near-infrared fluorescent probe for highly sensitive in vitro and in vivo detection of acetylcholinesterase activity.
    Xing L; Ma P; Chen F
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123954. PubMed ID: 38290281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: a meta-analysis.
    Noori HR; Fliegel S; Brand I; Spanagel R
    Synapse; 2012 Oct; 66(10):893-901. PubMed ID: 22733599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain and regional dependence of alternate splicing of acetylcholinesterase in the murine brain following stress or treatment with diisopropylfluorophosphate.
    Livneh U; Dori A; Katzav A; Kofman O
    Behav Brain Res; 2010 Jun; 210(1):107-15. PubMed ID: 20178819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and reversible perylene derivative-based fluorescent probe for acetylcholinesterase activity monitoring and its inhibitor.
    Chen Y; Liu W; Zhang B; Suo Z; Xing F; Feng L
    Anal Biochem; 2020 Oct; 607():113835. PubMed ID: 32739347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric Near-Infrared Fluorescent Probe for Synergistic Detection of Monoamine Oxidase B and Its Contribution to Oxidative Stress in Cell and Mice Aging Models.
    Wang R; Han X; You J; Yu F; Chen L
    Anal Chem; 2018 Mar; 90(6):4054-4061. PubMed ID: 29400049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.