These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33666723)

  • 41. Kinematics of Maximal Speed Sprinting With Different Running Speed, Leg Length, and Step Characteristics.
    Miyashiro K; Nagahara R; Yamamoto K; Nishijima T
    Front Sports Act Living; 2019; 1():37. PubMed ID: 33344960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in relative work of the lower extremity joints and distal foot with walking speed.
    Ebrahimi A; Goldberg SR; Stanhope SJ
    J Biomech; 2017 Jun; 58():212-216. PubMed ID: 28483145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional CoM energetics, pelvis and lower limbs joint kinematics of uphill treadmill running at high speed.
    Okudaira M; Willwacher S; Kuki S; Yamada K; Yoshida T; Tanigawa S
    J Sports Sci; 2020 Mar; 38(5):518-527. PubMed ID: 31900052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider,
    Gerald GW; Thompson MM; Levine TD; Wrinn KM
    Ecol Evol; 2017 Sep; 7(17):6729-6735. PubMed ID: 28904754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults.
    Muehlbauer T; Granacher U; Borde R; Hortobágyi T
    Gerontology; 2018; 64(1):11-18. PubMed ID: 28918423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The independent effects of speed and propulsive force on joint power generation in walking.
    Browne MG; Franz JR
    J Biomech; 2017 Apr; 55():48-55. PubMed ID: 28262285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles.
    Siebert T; Weihmann T; Rode C; Blickhan R
    J Comp Physiol B; 2010 Feb; 180(2):199-209. PubMed ID: 19756652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Grip and limb force limits to turning performance in competition horses.
    Tan H; Wilson AM
    Proc Biol Sci; 2011 Jul; 278(1715):2105-11. PubMed ID: 21147799
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupling of upper and lower limb pattern generators during human crawling at different arm/leg speed combinations.
    MacLellan MJ; Ivanenko YP; Catavitello G; La Scaleia V; Lacquaniti F
    Exp Brain Res; 2013 Mar; 225(2):217-25. PubMed ID: 23241905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptive behaviour of the spinal cord in the transition from quiet stance to walking.
    Serrao M; Ranavolo A; Andersen OK; Conte C; Don R; Cortese F; Mari S; Draicchio F; Padua L; Sandrini G; Pierelli F
    BMC Neurosci; 2012 Jul; 13():80. PubMed ID: 22800397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gait kinematics & kinetics at three walking speeds in individuals with chronic ankle instability and ankle sprain copers.
    Koldenhoven RM; Hart J; Saliba S; Abel MF; Hertel J
    Gait Posture; 2019 Oct; 74():169-175. PubMed ID: 31525655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speed dependent effects of laterally wedged insoles on gait biomechanics in healthy subjects.
    Kluge F; Krinner S; Lochmann M; Eskofier BM
    Gait Posture; 2017 Jun; 55():145-149. PubMed ID: 28445855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compensations in lower limb joint work during walking in response to unilateral calf muscle weakness.
    Waterval NFJ; Brehm MA; Ploeger HE; Nollet F; Harlaar J
    Gait Posture; 2018 Oct; 66():38-44. PubMed ID: 30145473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid recovery of locomotor performance after leg loss in harvestmen.
    Escalante I; Badger MA; Elias DO
    Sci Rep; 2020 Aug; 10(1):13747. PubMed ID: 32792648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Terrestrial locomotion in arachnids.
    Spagna JC; Peattie AM
    J Insect Physiol; 2012 May; 58(5):599-606. PubMed ID: 22326455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners.
    Jiang X; Chen H; Sun D; Baker JS; Gu Y
    Acta Bioeng Biomech; 2021; 23(1):69-81. PubMed ID: 34846043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intraspecific scaling of the minimum metabolic cost of transport in leghorn chickens (Gallus gallus domesticus): links with limb kinematics, morphometrics and posture.
    Rose KA; Nudds RL; Codd JR
    J Exp Biol; 2015 Apr; 218(Pt 7):1028-34. PubMed ID: 25657211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.