BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33667591)

  • 1. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy.
    Cha E; Elguindi S; Onochie I; Gorovets D; Deasy JO; Zelefsky M; Gillespie EF
    Radiother Oncol; 2021 Jun; 159():1-7. PubMed ID: 33667591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.
    Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB
    Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy.
    Elguindi S; Zelefsky MJ; Jiang J; Veeraraghavan H; Deasy JO; Hunt MA; Tyagi N
    Phys Imaging Radiat Oncol; 2019 Oct; 12():80-86. PubMed ID: 32355894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning.
    Lucido JJ; DeWees TA; Leavitt TR; Anand A; Beltran CJ; Brooke MD; Buroker JR; Foote RL; Foss OR; Gleason AM; Hodge TL; Hughes CO; Hunzeker AE; Laack NN; Lenz TK; Livne M; Morigami M; Moseley DJ; Undahl LM; Patel Y; Tryggestad EJ; Walker MZ; Zverovitch A; Patel SH
    Front Oncol; 2023; 13():1137803. PubMed ID: 37091160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Deep Learning Based Autosegmentation for Clinical Target Volume: Current Status and Future Directions.
    Matoska T; Patel M; Liu H; Beriwal S
    Adv Radiat Oncol; 2024 May; 9(5):101470. PubMed ID: 38550365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-institutional quantitative evaluation and clinical validation of Smart Probabilistic Image Contouring Engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas.
    Zhu M; Bzdusek K; Brink C; Eriksen JG; Hansen O; Jensen HA; Gay HA; Thorstad W; Widder J; Brouwer CL; Steenbakkers RJ; Vanhauten HA; Cao JQ; McBrayne G; Patel SH; Cannon DM; Hardcastle N; Tomé WA; Guckenberg M; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Nov; 87(4):809-16. PubMed ID: 24138920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.
    Martin S; Rodrigues G; Patil N; Bauman G; D'Souza D; Sexton T; Palma D; Louie AV; Khalvati F; Tizhoosh HR; Gaede S
    Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):95-100. PubMed ID: 22572076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic contouring QA method using a deep learning-based autocontouring system.
    Rhee DJ; Akinfenwa CPA; Rigaud B; Jhingran A; Cardenas CE; Zhang L; Prajapati S; Kry SF; Brock KK; Beadle BM; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    J Appl Clin Med Phys; 2022 Aug; 23(8):e13647. PubMed ID: 35580067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.
    Doolan PJ; Charalambous S; Roussakis Y; Leczynski A; Peratikou M; Benjamin M; Ferentinos K; Strouthos I; Zamboglou C; Karagiannis E
    Front Oncol; 2023; 13():1213068. PubMed ID: 37601695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm.
    Claessens M; Vanreusel V; De Kerf G; Mollaert I; Löfman F; Gooding MJ; Brouwer C; Dirix P; Verellen D
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35561701
    [No Abstract]   [Full Text] [Related]  

  • 18. Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries.
    McCarroll RE; Beadle BM; Balter PA; Burger H; Cardenas CE; Dalvie S; Followill DS; Kisling KD; Mejia M; Naidoo K; Nelson CL; Peterson CB; Vorster K; Wetter J; Zhang L; Court LE; Yang J
    J Glob Oncol; 2018 Jul; 4():1-11. PubMed ID: 30110221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy.
    Mackay K; Bernstein D; Glocker B; Kamnitsas K; Taylor A
    Clin Oncol (R Coll Radiol); 2023 Jun; 35(6):354-369. PubMed ID: 36803407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.