BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33667591)

  • 21. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer.
    Gardner SJ; Wen N; Kim J; Liu C; Pradhan D; Aref I; Cattaneo R; Vance S; Movsas B; Chetty IJ; Elshaikh MA
    Phys Med Biol; 2015 Jun; 60(11):4429-47. PubMed ID: 25988718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy.
    Vaassen F; Hazelaar C; Vaniqui A; Gooding M; van der Heyden B; Canters R; van Elmpt W
    Phys Imaging Radiat Oncol; 2020 Jan; 13():1-6. PubMed ID: 33458300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.
    Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S
    Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients.
    van den Berg I; Savenije MHF; Teunissen FR; van de Pol SMG; Rasing MJA; van Melick HHE; Brink WM; de Boer JCJ; van den Berg CAT; van der Voort van Zyp JRN
    Phys Imaging Radiat Oncol; 2023 Apr; 26():100453. PubMed ID: 37312973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospective Clinical Evaluation of Integrating a Radiation Anatomist for Contouring in Routine Radiation Treatment Planning.
    Zhang H; Onochie I; Hilal L; Wijetunga NA; Hipp E; Guttmann DM; Cahlon O; Washington C; Gomez DR; Gillespie EF
    Adv Radiat Oncol; 2022; 7(6):101009. PubMed ID: 36092987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test.
    Gooding MJ; Smith AJ; Tariq M; Aljabar P; Peressutti D; van der Stoep J; Reymen B; Emans D; Hattu D; van Loon J; de Rooy M; Wanders R; Peeters S; Lustberg T; van Soest J; Dekker A; van Elmpt W
    Med Phys; 2018 Nov; 45(11):5105-5115. PubMed ID: 30229951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions.
    Simmat I; Georg P; Georg D; Birkfellner W; Goldner G; Stock M
    Strahlenther Onkol; 2012 Sep; 188(9):807-15. PubMed ID: 22669393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review.
    Sherer MV; Lin D; Elguindi S; Duke S; Tan LT; Cacicedo J; Dahele M; Gillespie EF
    Radiother Oncol; 2021 Jul; 160():185-191. PubMed ID: 33984348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel methodology to assess the effect of contouring variation on treatment outcome.
    Jenkins A; Mullen TS; Johnson-Hart C; Green A; McWilliam A; Aznar M; van Herk M; Vasquez Osorio E
    Med Phys; 2021 Jun; 48(6):3234-3242. PubMed ID: 33772803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autosegmentation based on different-sized training datasets of consistently-curated volumes and impact on rectal contours in prostate cancer radiation therapy.
    Elisabeth Olsson C; Suresh R; Niemelä J; Akram SU; Valdman A
    Phys Imaging Radiat Oncol; 2022 Apr; 22():67-72. PubMed ID: 35572041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Intelligence-Based Radiotherapy Contouring and Planning to Improve Global Access to Cancer Care.
    Court LE; Aggarwal A; Jhingran A; Naidoo K; Netherton T; Olanrewaju A; Peterson C; Parkes J; Simonds H; Trauernicht C; Zhang L; Beadle BM;
    JCO Glob Oncol; 2024 Mar; 10():e2300376. PubMed ID: 38484191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patient specific deep learning based segmentation for magnetic resonance guided prostate radiotherapy.
    Fransson S; Tilly D; Strand R
    Phys Imaging Radiat Oncol; 2022 Jul; 23():38-42. PubMed ID: 35769110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis.
    Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT
    Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated contour propagation of the prostate from pCT to CBCT images via deep unsupervised learning.
    Liang X; Bibault JE; Leroy T; Escande A; Zhao W; Chen Y; Buyyounouski MK; Hancock SL; Bagshaw H; Xing L
    Med Phys; 2021 Apr; 48(4):1764-1770. PubMed ID: 33544390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Prostate Fossa Contouring Instructional Module: Implementation and Evaluation.
    Gunther JR; Liauw SL; Choi S; Mohamed AS; Thaker NG; Fuller CD; Stepaniak CJ; Das P; Golden DW
    J Am Coll Radiol; 2016 Jul; 13(7):835-841.e1. PubMed ID: 27210232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.