These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33667657)
1. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Zottel A; Jovčevska I; Šamec N; Komel R Crit Rev Oncol Hematol; 2021 Apr; 160():103283. PubMed ID: 33667657 [TBL] [Abstract][Full Text] [Related]
2. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin. Katsetos CD; Dráberová E; Legido A; Dumontet C; Dráber P J Cell Physiol; 2009 Dec; 221(3):505-13. PubMed ID: 19650075 [TBL] [Abstract][Full Text] [Related]
3. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. gamma-Tubulin. Katsetos CD; Dráberová E; Legido A; Dráber P J Cell Physiol; 2009 Dec; 221(3):514-20. PubMed ID: 19650077 [TBL] [Abstract][Full Text] [Related]
4. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Du S; Sarver JG; Trabbic CJ; Erhardt PW; Schroering A; Maltese WA Cancer Chemother Pharmacol; 2019 Feb; 83(2):237-254. PubMed ID: 30426158 [TBL] [Abstract][Full Text] [Related]
5. NMK-BH2, a novel microtubule-depolymerising bis (indolyl)-hydrazide-hydrazone, induces apoptotic and autophagic cell death in cervical cancer cells by binding to tubulin at colchicine - site. Das Mukherjee D; Kumar NM; Tantak MP; Datta S; Ghosh Dastidar D; Kumar D; Chakrabarti G Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118762. PubMed ID: 32502617 [TBL] [Abstract][Full Text] [Related]
6. HtrA3 is a cellular partner of cytoskeleton proteins and TCP1α chaperonin. Wenta T; Zurawa-Janicka D; Rychlowski M; Jarzab M; Glaza P; Lipinska A; Bienkowska-Szewczyk K; Herman-Antosiewicz A; Skorko-Glonek J; Lipinska B J Proteomics; 2018 Apr; 177():88-111. PubMed ID: 29477555 [TBL] [Abstract][Full Text] [Related]
7. Tubulins as therapeutic targets in cancer: from bench to bedside. Katsetos CD; Dráber P Curr Pharm Des; 2012; 18(19):2778-92. PubMed ID: 22390762 [TBL] [Abstract][Full Text] [Related]
8. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Naaz F; Haider MR; Shafi S; Yar MS Eur J Med Chem; 2019 Jun; 171():310-331. PubMed ID: 30953881 [TBL] [Abstract][Full Text] [Related]
9. Microtubule Targeting Agents as Cancer Chemotherapeutics: An Overview of Molecular Hybrids as Stabilizing and Destabilizing Agents. Tangutur AD; Kumar D; Krishna KV; Kantevari S Curr Top Med Chem; 2017; 17(22):2523-2537. PubMed ID: 28056738 [TBL] [Abstract][Full Text] [Related]
10. Resistance to anti-tubulin agents: From vinca alkaloids to epothilones. Krause W Cancer Drug Resist; 2019; 2(1):82-106. PubMed ID: 35582143 [TBL] [Abstract][Full Text] [Related]
11. Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients. Wang LJ; Bai Y; Bao ZS; Chen Y; Yan ZH; Zhang W; Zhang QG Chin Med J (Engl); 2013; 126(11):2062-6. PubMed ID: 23769558 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the cytoskeleton of isolated chick osteoclasts: effect of calcitonin. Hunter SJ; Schraer H; Gay CV J Histochem Cytochem; 1989 Oct; 37(10):1529-37. PubMed ID: 2778308 [TBL] [Abstract][Full Text] [Related]
13. Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth. Chakrabarti KR; Hessler L; Bhandary L; Martin SS Clin Cancer Res; 2015 Dec; 21(23):5209-5214. PubMed ID: 26463706 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of Tubulin Binding Ligands to Target Cancer Cells: Updates on their Therapeutic Potential and Clinical Trials. Kumar B; Kumar R; Skvortsova I; Kumar V Curr Cancer Drug Targets; 2017; 17(4):357-375. PubMed ID: 27697026 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Allani PK; Sum T; Bhansali SG; Mukherjee SK; Sonee M Toxicol Appl Pharmacol; 2004 Apr; 196(1):29-36. PubMed ID: 15050405 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Jordan MA Curr Med Chem Anticancer Agents; 2002 Jan; 2(1):1-17. PubMed ID: 12678749 [TBL] [Abstract][Full Text] [Related]
17. A radiolabeled monoclonal antibody binding assay for cytoskeletal tubulin in cultured cells. Ball RL; Carney DH; Albrecht T; Asai DJ; Thompson WC J Cell Biol; 1986 Sep; 103(3):1033-41. PubMed ID: 3528166 [TBL] [Abstract][Full Text] [Related]
18. Microtubules: a dynamic target in cancer therapy. Pasquier E; Kavallaris M IUBMB Life; 2008 Mar; 60(3):165-70. PubMed ID: 18380008 [TBL] [Abstract][Full Text] [Related]
19. Distribution of cytoskeletal proteins in neomycin-induced protrusions of human fibroblasts. Safiejko-Mroczka B; Bell PB Exp Cell Res; 1998 Aug; 242(2):495-514. PubMed ID: 9683537 [TBL] [Abstract][Full Text] [Related]
20. A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the Bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species. Yee B; Lafi FF; Oakley B; Staley JT; Fuerst JA BMC Evol Biol; 2007 Mar; 7():37. PubMed ID: 17349062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]