BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33667726)

  • 1. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction.
    Gutierrez JA; Liu W; Perez S; Xing G; Sonnenberg G; Kou K; Blatnik M; Allen R; Weng Y; Vera NB; Chidsey K; Bergman A; Somayaji V; Crowley C; Clasquin MF; Nigam A; Fulham MA; Erion DM; Ross TT; Esler WP; Magee TV; Pfefferkorn JA; Bence KK; Birnbaum MJ; Tesz GJ
    Mol Metab; 2021 Jun; 48():101196. PubMed ID: 33667726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis.
    Shepherd EL; Saborano R; Northall E; Matsuda K; Ogino H; Yashiro H; Pickens J; Feaver RE; Cole BK; Hoang SA; Lawson MJ; Olson M; Figler RA; Reardon JE; Nishigaki N; Wamhoff BR; Günther UL; Hirschfield G; Erion DM; Lalor PF
    JHEP Rep; 2021 Apr; 3(2):100217. PubMed ID: 33490936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ketohexokinase in adults with NAFLD reduces liver fat and inflammatory markers: A randomized phase 2 trial.
    Kazierad DJ; Chidsey K; Somayaji VR; Bergman AJ; Birnbaum MJ; Calle RA
    Med; 2021 Jul; 2(7):800-813.e3. PubMed ID: 35590219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of PF-06835919: A Potent Inhibitor of Ketohexokinase (KHK) for the Treatment of Metabolic Disorders Driven by the Overconsumption of Fructose.
    Futatsugi K; Smith AC; Tu M; Raymer B; Ahn K; Coffey SB; Dowling MS; Fernando DP; Gutierrez JA; Huard K; Jasti J; Kalgutkar AS; Knafels JD; Pandit J; Parris KD; Perez S; Pfefferkorn JA; Price DA; Ryder T; Shavnya A; Stock IA; Tsai AS; Tesz GJ; Thuma BA; Weng Y; Wisniewska HM; Xing G; Zhou J; Magee TV
    J Med Chem; 2020 Nov; 63(22):13546-13560. PubMed ID: 32910646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osthol Ameliorates Kidney Damage and Metabolic Syndrome Induced by a High-Fat/High-Sugar Diet.
    García-Arroyo FE; Gonzaga-Sánchez G; Tapia E; Muñoz-Jiménez I; Manterola-Romero L; Osorio-Alonso H; Arellano-Buendía AS; Pedraza-Chaverri J; Roncal-Jiménez CA; Lanaspa MA; Johnson RJ; Sánchez-Lozada LG
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33670975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketohexokinase-C regulates global protein acetylation to decrease carnitine palmitoyltransferase 1a-mediated fatty acid oxidation.
    Helsley RN; Park SH; Vekaria HJ; Sullivan PG; Conroy LR; Sun RC; Romero MDM; Herrero L; Bons J; King CD; Rose J; Meyer JG; Schilling B; Kahn CR; Softic S
    J Hepatol; 2023 Jul; 79(1):25-42. PubMed ID: 36822479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose induced KHK-C can increase ER stress independent of its effect on lipogenesis to drive liver disease in diet-induced and genetic models of NAFLD.
    Park SH; Helsley RN; Fadhul T; Willoughby JLS; Noetzli L; Tu HC; Solheim MH; Fujisaka S; Pan H; Dreyfuss JM; Bons J; Rose J; King CD; Schilling B; Lusis AJ; Pan C; Gupta M; Kulkarni RN; Fitzgerald K; Kern PA; Divanovic S; Kahn CR; Softic S
    Metabolism; 2023 Aug; 145():155591. PubMed ID: 37230214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK).
    Huard K; Ahn K; Amor P; Beebe DA; Borzilleri KA; Chrunyk BA; Coffey SB; Cong Y; Conn EL; Culp JS; Dowling MS; Gorgoglione MF; Gutierrez JA; Knafels JD; Lachapelle EA; Pandit J; Parris KD; Perez S; Pfefferkorn JA; Price DA; Raymer B; Ross TT; Shavnya A; Smith AC; Subashi TA; Tesz GJ; Thuma BA; Tu M; Weaver JD; Weng Y; Withka JM; Xing G; Magee TV
    J Med Chem; 2017 Sep; 60(18):7835-7849. PubMed ID: 28853885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The small intestine shields the liver from fructose-induced steatosis.
    Jang C; Wada S; Yang S; Gosis B; Zeng X; Zhang Z; Shen Y; Lee G; Arany Z; Rabinowitz JD
    Nat Metab; 2020 Jul; 2(7):586-593. PubMed ID: 32694791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose as a key player in the development of fatty liver disease.
    Basaranoglu M; Basaranoglu G; Sabuncu T; Sentürk H
    World J Gastroenterol; 2013 Feb; 19(8):1166-72. PubMed ID: 23482247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ketohexokinase knockout mice, a model for essential fructosuria, exhibit altered fructose metabolism and are protected from diet-induced metabolic defects.
    Miller CO; Yang X; Lu K; Cao J; Herath K; Rosahl TW; Askew R; Pavlovic G; Zhou G; Li C; Akiyama TE
    Am J Physiol Endocrinol Metab; 2018 Sep; 315(3):E386-E393. PubMed ID: 29870677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.
    Softic S; Cohen DE; Kahn CR
    Dig Dis Sci; 2016 May; 61(5):1282-93. PubMed ID: 26856717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver.
    Lanaspa MA; Sanchez-Lozada LG; Cicerchi C; Li N; Roncal-Jimenez CA; Ishimoto T; Le M; Garcia GE; Thomas JB; Rivard CJ; Andres-Hernando A; Hunter B; Schreiner G; Rodriguez-Iturbe B; Sautin YY; Johnson RJ
    PLoS One; 2012; 7(10):e47948. PubMed ID: 23112875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A luminescence-based protocol for assessing fructose metabolism via quantification of ketohexokinase enzymatic activity in mouse or human hepatocytes.
    Park SH; Helsley RN; Noetzli L; Tu HC; Wallenius K; O'Mahony G; Boucher J; Liu J; Softic S
    STAR Protoc; 2021 Sep; 2(3):100731. PubMed ID: 34409309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose consumption as a risk factor for non-alcoholic fatty liver disease.
    Ouyang X; Cirillo P; Sautin Y; McCall S; Bruchette JL; Diehl AM; Johnson RJ; Abdelmalek MF
    J Hepatol; 2008 Jun; 48(6):993-9. PubMed ID: 18395287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChREBP-driven DNL and PNPLA3 Expression Induced by Liquid Fructose are Essential in the Production of Fatty Liver and Hypertriglyceridemia in a High-Fat Diet-Fed Rat Model.
    Velázquez AM; Bentanachs R; Sala-Vila A; Lázaro I; Rodríguez-Morató J; Sánchez RM; Alegret M; Roglans N; Laguna JC
    Mol Nutr Food Res; 2022 Apr; 66(7):e2101115. PubMed ID: 35124887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.
    Ter Horst KW; Serlie MJ
    Nutrients; 2017 Sep; 9(9):. PubMed ID: 28878197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a Novel Ketohexokinase Inhibitor with Improved Drug Distribution in Target Tissue for the Treatment of Fructose Metabolic Disease.
    Zhu G; Li J; Lin X; Zhang Z; Hu T; Huo S; Li Y
    J Med Chem; 2023 Oct; 66(19):13501-13515. PubMed ID: 37766386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fructose and hepatic insulin resistance.
    Softic S; Stanhope KL; Boucher J; Divanovic S; Lanaspa MA; Johnson RJ; Kahn CR
    Crit Rev Clin Lab Sci; 2020 Aug; 57(5):308-322. PubMed ID: 31935149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice.
    Patel C; Sugimoto K; Douard V; Shah A; Inui H; Yamanouchi T; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2015 Nov; 309(9):G779-90. PubMed ID: 26316589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.