These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33667878)

  • 1. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megacities as drivers of national outbreaks: The 2017 chikungunya outbreak in Dhaka, Bangladesh.
    Mahmud AS; Kabir MI; Engø-Monsen K; Tahmina S; Riaz BK; Hossain MA; Khanom F; Rahman MM; Rahman MK; Sharmin M; Hossain DM; Yasmin S; Ahmed MM; Lusha MAF; Buckee CO
    PLoS Negl Trop Dis; 2021 Feb; 15(2):e0009106. PubMed ID: 33529229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the paths of COVID-19 in a large city based on public transportation data.
    Araújo JLB; Oliveira EA; Lima Neto AS; Andrade JS; Furtado V
    Sci Rep; 2023 Apr; 13(1):5761. PubMed ID: 37031258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An SIS model for the epidemic dynamics with two phases of the human day-to-day activity.
    Seno H
    J Math Biol; 2020 Jun; 80(7):2109-2140. PubMed ID: 32270285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of urban structure on infectious disease spreading.
    Aguilar J; Bassolas A; Ghoshal G; Hazarie S; Kirkley A; Mazzoli M; Meloni S; Mimar S; Nicosia V; Ramasco JJ; Sadilek A
    Sci Rep; 2022 Mar; 12(1):3816. PubMed ID: 35264587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated travel network model for studying epidemics: Interplay between journeys and epidemic.
    Ruan Z; Wang C; Hui PM; Liu Z
    Sci Rep; 2015 Jun; 5():11401. PubMed ID: 26073191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crowding and the shape of COVID-19 epidemics.
    Rader B; Scarpino SV; Nande A; Hill AL; Adlam B; Reiner RC; Pigott DM; Gutierrez B; Zarebski AE; Shrestha M; Brownstein JS; Castro MC; Dye C; Tian H; Pybus OG; Kraemer MUG
    Nat Med; 2020 Dec; 26(12):1829-1834. PubMed ID: 33020651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of transport network accessibility in the spread of COVID-19 - a case study in Savar Upazila, Bangladesh.
    Mahmud KH; Hafsa B; Ahmed R
    Geospat Health; 2021 Mar; 16(1):. PubMed ID: 33706501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human mobility patterns in Brazil to inform sampling sites for early pathogen detection and routes of spread: a network modelling and validation study.
    Oliveira JF; Alencar AL; Cunha MCLS; Vasconcelos AO; Cunha GG; Miranda RB; Filho FMHS; Silva C; Gustani-Buss E; Khouri R; Cerqueira-Silva T; Landau L; Barral-Netto M; Ramos PIP
    Lancet Digit Health; 2024 Aug; 6(8):e570-e579. PubMed ID: 39059889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the Transition From Subexponential to the Exponential Transmission of SARS-CoV-2 in Chennai, India: Epidemic Nowcasting.
    Krishnamurthy K; Ambikapathy B; Kumar A; Britto L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e21152. PubMed ID: 32609621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas.
    Kumar N; Oke J; Nahmias-Biran BH
    Sci Rep; 2021 Nov; 11(1):22665. PubMed ID: 34811414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
    Mpolya EA; Yashima K; Ohtsuki H; Sasaki A
    J Theor Biol; 2014 Feb; 343():120-6. PubMed ID: 24321227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of SARS-CoV-2 transmission in a medium-sized city with traditional communities during the early COVID-19 epidemic in China.
    Li Y; Si HR; Zhu Y; Xie N; Li B; Zhang XP; Han JF; Bao HH; Yang Y; Zhao K; Hou ZY; Cheng SJ; Zhang SH; Shi ZL; Zhou P
    Virol Sin; 2022 Apr; 37(2):187-197. PubMed ID: 35279413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic spread on patch networks with community structure.
    Lieberthal B; Soliman A; Wang S; De Urioste-Stone S; Gardner AM
    Math Biosci; 2023 May; 359():108996. PubMed ID: 37003422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling epidemic in metapopulation networks with heterogeneous diffusion rates.
    Liu MX; Zhang J; Li ZG; Sun YZ
    Math Biosci Eng; 2019 Aug; 16(6):7085-7097. PubMed ID: 31698604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Linear Regression Prediction Model of Infectious Disease Spread Based on Baidu Migration and Effective Distance.
    Zhou T
    Comput Math Methods Med; 2022; 2022():9554057. PubMed ID: 35747134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling epidemic spread in cities using public transportation as a proxy for generalized mobility trends.
    Malik O; Gong B; Moussawi A; Korniss G; Szymanski BK
    Sci Rep; 2022 Apr; 12(1):6372. PubMed ID: 35430595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.