BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33667959)

  • 21. Biobanked Glioblastoma Patient-Derived Organoids as a Precision Medicine Model to Study Inhibition of Invasion.
    Darrigues E; Zhao EH; De Loose A; Lee MP; Borrelli MJ; Eoff RL; Galileo DS; Penthala NR; Crooks PA; Rodriguez A
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography.
    Marino A; Tricinci O; Battaglini M; Filippeschi C; Mattoli V; Sinibaldi E; Ciofani G
    Small; 2018 Feb; 14(6):. PubMed ID: 29239532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glioblastoma immuno-endothelial multicellular microtissue as a 3D in vitro evaluation tool of anti-cancer nano-therapeutics.
    Martins C; Pacheco C; Moreira-Barbosa C; Marques-Magalhães Â; Dias S; Araújo M; Oliveira MJ; Sarmento B
    J Control Release; 2023 Jan; 353():77-95. PubMed ID: 36410614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution tomographic analysis of in vitro 3D glioblastoma tumor model under long-term drug treatment.
    Ozturk MS; Lee VK; Zou H; Friedel RH; Intes X; Dai G
    Sci Adv; 2020 Mar; 6(10):eaay7513. PubMed ID: 32181351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high-density 3-dimensional culture model of human glioblastoma for rapid screening of therapeutic resistance.
    Brown JMC; Zaben M; Ormonde C; Sharouf F; Spencer R; Bhatt H; Siebzehnrubl FA; Gray WP
    Biochem Pharmacol; 2023 Feb; 208():115410. PubMed ID: 36632958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1.
    Chou CW; Wang CC; Wu CP; Lin YJ; Lee YC; Cheng YW; Hsieh CH
    Neuro Oncol; 2012 Oct; 14(10):1227-38. PubMed ID: 22946104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IKBKE enhances TMZ-chemoresistance through upregulation of MGMT expression in glioblastoma.
    Guo G; Sun Y; Hong R; Xiong J; Lu Y; Liu Y; Lu J; Zhang Z; Guo C; Nan Y; Huang Q
    Clin Transl Oncol; 2020 Aug; 22(8):1252-1262. PubMed ID: 31865606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glioblastoma precision therapy: From the bench to the clinic.
    Zhou Y; Wu W; Bi H; Yang D; Zhang C
    Cancer Lett; 2020 Apr; 475():79-91. PubMed ID: 32004571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies.
    Balça-Silva J; Matias D; Carmo AD; Sarmento-Ribeiro AB; Lopes MC; Moura-Neto V
    Semin Cancer Biol; 2019 Oct; 58():130-141. PubMed ID: 30266571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma.
    Sachdeva R; Wu M; Smiljanic S; Kaskun O; Ghannad-Zadeh K; Celebre A; Isaev K; Morrissy AS; Guan J; Tong J; Chan J; Wilson TM; Al-Omaishi S; Munoz DG; Dirks PB; Moran MF; Taylor MD; Reimand J; Das S
    Cancer Res; 2019 Aug; 79(16):4057-4071. PubMed ID: 31292163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.
    Singh A; Brito I; Lammerding J
    Trends Cancer; 2018 Apr; 4(4):281-291. PubMed ID: 29606313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new model isolates glioblastoma clonal interactions and reveals unexpected modes for regulating motility, proliferation, and drug resistance.
    Davis JB; Krishna SS; Abi Jomaa R; Duong CT; Espina V; Liotta LA; Mueller C
    Sci Rep; 2019 Nov; 9(1):17380. PubMed ID: 31758030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary SAR on indole-3-carbinol and related fragments reveals a novel anticancer lead compound against resistant glioblastoma cells.
    Sherer C; Tolaymat I; Rowther F; Warr T; Snape TJ
    Bioorg Med Chem Lett; 2017 Apr; 27(7):1561-1565. PubMed ID: 28256372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An in silico screen links gene expression signatures to drug response in glioblastoma stem cells.
    Riddick G; Song H; Holbeck SL; Kopp W; Walling J; Ahn S; Zhang W; Fine HA
    Pharmacogenomics J; 2015 Aug; 15(4):347-53. PubMed ID: 25446780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.