These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33667965)

  • 1. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators.
    Khan MIR; Ashfaque F; Chhillar H; Irfan M; Khan NA
    Plant Physiol Biochem; 2021 May; 162():36-47. PubMed ID: 33667965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules.
    Tripathi DK; Vishwakarma K; Singh VP; Prakash V; Sharma S; Muneer S; Nikolic M; Deshmukh R; VaculĂ­k M; Corpas FJ
    J Hazard Mater; 2021 Apr; 408():124820. PubMed ID: 33516974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants.
    Basu S; Kumar G
    Plant Physiol Biochem; 2021 Sep; 166():393-404. PubMed ID: 34153883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture.
    Ranjan A; Sinha R; Bala M; Pareek A; Singla-Pareek SL; Singh AK
    Plant Physiol Biochem; 2021 Jun; 163():15-25. PubMed ID: 33799014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants.
    Kaya C; Ugurlar F; Ashraf M; Ahmad P
    Plant Physiol Biochem; 2023 Mar; 196():431-443. PubMed ID: 36758290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress.
    Asgher M; Per TS; Masood A; Fatma M; Freschi L; Corpas FJ; Khan NA
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2273-2285. PubMed ID: 27812964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules.
    Kumari S; Nazir F; Maheshwari C; Kaur H; Gupta R; Siddique KHM; Khan MIR
    Plant Physiol Biochem; 2024 Jan; 206():108238. PubMed ID: 38064902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress.
    Mir RA; Bhat BA; Yousuf H; Islam ST; Raza A; Rizvi MA; Charagh S; Albaqami M; Sofi PA; Zargar SM
    Front Plant Sci; 2022; 13():819658. PubMed ID: 35401625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones.
    Arif Y; Singh P; Bajguz A; Alam P; Hayat S
    Plant Physiol Biochem; 2021 Sep; 166():278-289. PubMed ID: 34146783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance.
    Zhou X; Joshi S; Khare T; Patil S; Shang J; Kumar V
    Plant Cell Rep; 2021 Aug; 40(8):1395-1414. PubMed ID: 33974111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon in mitigation of abiotic stress-induced oxidative damage in plants.
    Mostofa MG; Rahman MM; Ansary MMU; Keya SS; Abdelrahman M; Miah MG; Phan Tran LS
    Crit Rev Biotechnol; 2021 Sep; 41(6):918-934. PubMed ID: 33784900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species.
    Liu C; Liao W
    Plant Physiol Biochem; 2022 Jan; 173():110-121. PubMed ID: 35123248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants.
    Hasanuzzaman M; Bhuyan MHMB; Mahmud JA; Nahar K; Mohsin SM; Parvin K; Fujita M
    Plant Signal Behav; 2018; 13(5):e1477905. PubMed ID: 29939817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.
    Kim YH; Khan AL; Lee IJ
    Crit Rev Biotechnol; 2016 Dec; 36(6):1099-1109. PubMed ID: 26381374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress.
    Prakash V; Singh VP; Tripathi DK; Sharma S; Corpas FJ
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():39-49. PubMed ID: 33590621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules.
    Mukarram M; Petrik P; Mushtaq Z; Khan MMA; Gulfishan M; Lux A
    Environ Pollut; 2022 Oct; 310():119855. PubMed ID: 35940485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.