These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 33668294)

  • 1. Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass.
    Hejna M; Onelli E; Moscatelli A; Bellotto M; Cristiani C; Stroppa N; Rossi L
    Int J Environ Res Public Health; 2021 Feb; 18(5):. PubMed ID: 33668294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system.
    Hejna M; Moscatelli A; Stroppa N; Onelli E; Pilu S; Baldi A; Rossi L
    Chemosphere; 2020 Feb; 241():125018. PubMed ID: 31683415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges.
    Shen X; Dai M; Yang J; Sun L; Tan X; Peng C; Ali I; Naz I
    Chemosphere; 2022 Mar; 291(Pt 3):132979. PubMed ID: 34801572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals in plants and phytoremediation.
    Cheng S
    Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review.
    Ghosh D; Maiti SK
    Int J Phytoremediation; 2021; 23(6):559-576. PubMed ID: 33174450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil.
    Kafil M; Boroomand Nasab S; Moazed H; Bhatnagar A
    Int J Phytoremediation; 2019; 21(2):92-100. PubMed ID: 30656949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    J Environ Manage; 2017 Dec; 204(Pt 1):17-22. PubMed ID: 28846891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation.
    Asgari K; Cornelis WM
    Environ Monit Assess; 2015 Jul; 187(7):410. PubMed ID: 26050062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Nutritional ecology of heavy metals.
    Hejna M; Gottardo D; Baldi A; Dell'Orto V; Cheli F; Zaninelli M; Rossi L
    Animal; 2018 Oct; 12(10):2156-2170. PubMed ID: 29306340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol production from recovered napier grass with heavy metals.
    Ko CH; Yu FC; Chang FC; Yang BY; Chen WH; Hwang WS; Tu TC
    J Environ Manage; 2017 Dec; 203(Pt 3):1005-1010. PubMed ID: 28501336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass.
    Khan AHA; Kiyani A; Santiago-Herrera M; Ibáñez J; Yousaf S; Iqbal M; Martel-Martín S; Barros R
    J Environ Manage; 2023 Jan; 326(Pt B):116700. PubMed ID: 36423411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in phyto-combined remediation of heavy metal pollution in soil.
    Deng S; Zhang X; Zhu Y; Zhuo R
    Biotechnol Adv; 2024; 72():108337. PubMed ID: 38460740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employing algal biomass for fabrication of biofuels subsequent to phytoremediation.
    Kumari S; Kumari S; Singh A; Pandit PP; Sankhla MS; Singh T; Singh GP; Lodha P; Awasthi G; Awasthi KK
    Int J Phytoremediation; 2023; 25(8):941-955. PubMed ID: 36222270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.