These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Yang TY; Lee JM; Yoon SY; Park HC J Mater Sci Mater Med; 2010 May; 21(5):1495-502. PubMed ID: 20099009 [TBL] [Abstract][Full Text] [Related]
7. Dual-Scale Porosity Alumina Structures Using Ceramic/Camphene Suspensions Containing Polymer Microspheres. Lee H; Jeon JW; Koh YH; Kim HE Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683172 [TBL] [Abstract][Full Text] [Related]
8. Open-Cell Aluminum Foams by the Sponge Replication Technique. Sutygina A; Betke U; Scheffler M Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766482 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
12. Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials. Li J; Cheng R; Xiu H; Zhang M; Liu Q; Song T; Dong H; Yao B; Zhang X; Kozliak E; Ji Y Carbohydr Polym; 2018 Dec; 201():141-150. PubMed ID: 30241805 [TBL] [Abstract][Full Text] [Related]
13. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating. Chen X; Betke U; Rannabauer S; Peters PC; Söffker GM; Scheffler M Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773093 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Ceramic Foam Catalyst Using Polymer Foam Scrap via the Replica Technique for Dry Reforming. Yeetsorn R; Tungkamani S; Maiket Y ACS Omega; 2022 Feb; 7(5):4202-4213. PubMed ID: 35155913 [TBL] [Abstract][Full Text] [Related]
15. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Miao X; Tan DM; Li J; Xiao Y; Crawford R Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297 [TBL] [Abstract][Full Text] [Related]
16. Control of pore size in L-lactide/epsilon-caprolactone copolymer foams for tissue regeneration by the freeze-drying method. Nakao H; Hyon SH; Tsutsumi S; Matsumoto T; Takahashi J Dent Mater J; 2003 Sep; 22(3):262-71. PubMed ID: 14620993 [TBL] [Abstract][Full Text] [Related]
17. Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Pettignano A; Tanchoux N; Cacciaguerra T; Vincent T; Bernardi L; Guibal E; Quignard F Carbohydr Polym; 2017 Dec; 178():78-85. PubMed ID: 29050617 [TBL] [Abstract][Full Text] [Related]
18. Generation of Solid Foams with Controlled Polydispersity Using Microfluidics. Andrieux S; Drenckhan W; Stubenrauch C Langmuir; 2018 Jan; 34(4):1581-1590. PubMed ID: 29309162 [TBL] [Abstract][Full Text] [Related]
19. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Iftimi LD; Edinger M; Bar-Shalom D; Rantanen J; Genina N Eur J Pharm Biopharm; 2019 Mar; 136():38-47. PubMed ID: 30630061 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the Damage Phenomenology with Dependence on the Macroporosity and Microporosity of Porous Freeze Foams. Maier J; Werner D; Geske V; Behnisch T; Ahlhelm M; Moritz T; Michaelis A; Gude M Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]