These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Environmental conditions and serotype affect Listeria monocytogenes susceptibility to phage treatment in a laboratory cheese model. Henderson LO; Cabrera-Villamizar LA; Skeens J; Kent D; Murphy S; Wiedmann M; Guariglia-Oropeza V J Dairy Sci; 2019 Nov; 102(11):9674-9688. PubMed ID: 31477293 [TBL] [Abstract][Full Text] [Related]
7. Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States. Kim JW; Siletzky RM; Kathariou S Appl Environ Microbiol; 2008 Nov; 74(21):6623-30. PubMed ID: 18791016 [TBL] [Abstract][Full Text] [Related]
8. Glucose Decoration on Wall Teichoic Acid Is Required for Phage Adsorption and InlB-Mediated Virulence in Listeria ivanovii. Sumrall ET; Schneider SR; Boulos S; Loessner MJ; Shen Y J Bacteriol; 2021 Jul; 203(16):e0013621. PubMed ID: 34096780 [TBL] [Abstract][Full Text] [Related]
9. Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b. Cheng Y; Promadej N; Kim JW; Kathariou S Appl Environ Microbiol; 2008 Mar; 74(5):1653-5. PubMed ID: 18192405 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Wendlinger G; Loessner MJ; Scherer S Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():985-992. PubMed ID: 8936325 [TBL] [Abstract][Full Text] [Related]
11. Transposon-induced mutations in two loci of Listeria monocytogenes serotype 1/2a result in phage resistance and lack of N-acetylglucosamine in the teichoic acid of the cell wall. Tran HL; Fiedler F; Hodgson DA; Kathariou S Appl Environ Microbiol; 1999 Nov; 65(11):4793-8. PubMed ID: 10543788 [TBL] [Abstract][Full Text] [Related]
12. Temperature Significantly Affects the Plaquing and Adsorption Efficiencies of Listeria Phages. Tokman JI; Kent DJ; Wiedmann M; Denes T Front Microbiol; 2016; 7():631. PubMed ID: 27199957 [TBL] [Abstract][Full Text] [Related]
13. Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Sumrall ET; Röhrig C; Hupfeld M; Selvakumar L; Du J; Dunne M; Schmelcher M; Shen Y; Loessner MJ Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32358009 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand. Vongkamjan K; Benjakul S; Kim Vu HT; Vuddhakul V Food Microbiol; 2017 Sep; 66():11-19. PubMed ID: 28576358 [TBL] [Abstract][Full Text] [Related]
16. Engineered Reporter Phages for Rapid Bioluminescence-Based Detection and Differentiation of Viable Meile S; Sarbach A; Du J; Schuppler M; Saez C; Loessner MJ; Kilcher S Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245761 [TBL] [Abstract][Full Text] [Related]
17. Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption. Denes T; den Bakker HC; Tokman JI; Guldimann C; Wiedmann M Appl Environ Microbiol; 2015 Jul; 81(13):4295-305. PubMed ID: 25888172 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a Novel Group of Song Y; Peters TL; Bryan DW; Hudson LK; Denes TG Viruses; 2021 Apr; 13(4):. PubMed ID: 33919793 [No Abstract] [Full Text] [Related]