These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33668512)

  • 1. Micromotor Manipulation Using Ultrasonic Active Traveling Waves.
    Cao HX; Jung D; Lee HS; Go G; Nan M; Choi E; Kim CS; Park JO; Kang B
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Manipulation of Hydrodynamically Driven Microparticles in Vessel Bifurcation: Simulation, Optimization, Experimental Validation, and Potential for Targeted Drug Delivery.
    Sharif S; Jung D; Cao HX; Park JO; Kang B; Choi E
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery.
    Cao HX; Jung D; Lee HS; Nguyen VD; Choi E; Kang B; Park JO; Kim CS
    Pharmaceutics; 2022 Jul; 14(7):. PubMed ID: 35890382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of a 3D Particle Array Actuated by Ultrasonic Traveling Waves in a Regular Polygon Resonator.
    Wan F; Xu K; Wang H; Xu H; Huang A; Bai Z; Zhang L; Wu L
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, Acoustic Characterization and Phase Reference-Based Calibration Method for a Single-Sided Multi-Channel Ultrasonic Actuator.
    Cao HX; Jung D; Lee HS; Nguyen VD; Choi E; Kim CS; Park JO; Kang B
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances.
    Wang S; Wang X; You F; Xiao H
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature bulk PZT traveling wave ultrasonic motors for low-speed high-torque rotary actuation.
    Hareesh P; DeVoe DL
    J Microelectromech Syst; 2018 Jun; 27(3):547-554. PubMed ID: 30505138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Manipulation in 2D Space Using a Capacitive Micromachined Ultrasonic Transducer.
    Lee CH; Park BH; Kim YH; Jo HG; Park KK
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Particle Manipulation in Glass Capillaries: A Concise Review.
    Liu G; Lei J; Cheng F; Li K; Ji X; Huang Z; Guo Z
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise micro-particle and bubble manipulation by tunable ultrasonic bottle beams.
    Zhou Q; Li M; Fu C; Ren X; Xu Z; Liu X
    Ultrason Sonochem; 2021 Jul; 75():105602. PubMed ID: 34052721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic devices for particle and cell manipulation and sensing.
    Qiu Y; Wang H; Demore CE; Hughes DA; Glynne-Jones P; Gebhardt S; Bolhovitins A; Poltarjonoks R; Weijer K; Schönecker A; Hill M; Cochran S
    Sensors (Basel); 2014 Aug; 14(8):14806-38. PubMed ID: 25123465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal.
    Yang Y; Ma T; Li S; Zhang Q; Huang J; Liu Y; Zhuang J; Li Y; Du X; Niu L; Xiao Y; Wang C; Cai F; Zheng H
    Research (Wash D C); 2021; 2021():9781394. PubMed ID: 33623923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional scholte wave generation and detection using interdigital capacitive micromachined ultrasonic transducers.
    McLean J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):756-64. PubMed ID: 15244289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation Force as a Physical Mechanism for Ultrasonic Neurostimulation of the
    Menz MD; Ye P; Firouzi K; Nikoozadeh A; Pauly KB; Khuri-Yakub P; Baccus SA
    J Neurosci; 2019 Aug; 39(32):6251-6264. PubMed ID: 31196935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.