These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 33668565)
21. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Rashtchian M; Hivechi A; Bahrami SH; Milan PB; Simorgh S Carbohydr Polym; 2020 Apr; 233():115873. PubMed ID: 32059913 [TBL] [Abstract][Full Text] [Related]
22. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting. Cui Y; Jin R; Zhang Y; Yu M; Zhou Y; Wang LQ Int J Bioprint; 2021; 7(4):397. PubMed ID: 34805591 [TBL] [Abstract][Full Text] [Related]
23. Dual-Crosslinking of Gelatin-Based Hydrogels: Promising Compositions for a 3D Printed Organotypic Bone Model. Shehzad A; Mukasheva F; Moazzam M; Sultanova D; Abdikhan B; Trifonov A; Akilbekova D Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370635 [TBL] [Abstract][Full Text] [Related]
24. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
25. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841 [TBL] [Abstract][Full Text] [Related]
26. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
27. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981 [TBL] [Abstract][Full Text] [Related]
28. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs. Kamaraj M; Sreevani G; Prabusankar G; Rath SN Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112478. PubMed ID: 34857263 [TBL] [Abstract][Full Text] [Related]
29. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Kamdem Tamo A; Doench I; Walter L; Montembault A; Sudre G; David L; Morales-Helguera A; Selig M; Rolauffs B; Bernstein A; Hoenders D; Walther A; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065272 [TBL] [Abstract][Full Text] [Related]
30. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
31. Tyramine-Functionalized Alginate-Collagen Hybrid Hydrogel Inks for 3D-Bioprinting. Kim SD; Jin S; Kim S; Son D; Shin M Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956690 [TBL] [Abstract][Full Text] [Related]
32. Cellulose Nanocrystal Gels with Tunable Mechanical Properties from Hybrid Thermal Strategies. Li Z; Soto MA; Drummond JG; Martinez DM; Hamad WY; MacLachlan MJ ACS Appl Mater Interfaces; 2023 Feb; 15(6):8406-8414. PubMed ID: 36719931 [TBL] [Abstract][Full Text] [Related]
34. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. He X; Lu Q Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
36. 3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels. Nelson C; Tuladhar S; Launen L; Habib A Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948280 [TBL] [Abstract][Full Text] [Related]
37. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures. Jin Y; Compaan A; Bhattacharjee T; Huang Y Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095 [TBL] [Abstract][Full Text] [Related]
38. Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Valente BFA; Luís J; Pires L; Oliveira H; Oliveira M; Silvestre AJD; Vilela C; Freire CSR Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808026 [TBL] [Abstract][Full Text] [Related]
39. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting. Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754 [TBL] [Abstract][Full Text] [Related]
40. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]