These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 33669148)

  • 1. Accuracy Investigation of the Pose Determination of a VR System.
    Bauer P; Lienhart W; Jost S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33669148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.
    Niehorster DC; Li L; Lappe M
    Iperception; 2017; 8(3):2041669517708205. PubMed ID: 28567271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative method for evaluation of 6 degree of freedom virtual reality systems.
    Jost TA; Drewelow G; Koziol S; Rylander J
    J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of using a fully immersive virtual reality system for kinematic data collection.
    Spitzley KA; Karduna AR
    J Biomech; 2019 Apr; 87():172-176. PubMed ID: 30853091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affordable Personalized, Immersive VR Motor Rehabilitation System with Full Body Tracking.
    Adolf J; Dolezal J; Lhotska L
    Stud Health Technol Inform; 2019; 261():75-81. PubMed ID: 31156094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.
    Yang Y; Weng D; Li D; Xun H
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization and calibration of the HTC VIVE for virtual reality physical therapy.
    Hemphill S; Nguyen A; Rodriguez ST; Menendez M; Wang E; Lawrence K; Caruso TJ
    Digit Health; 2020; 6():2055207620950929. PubMed ID: 32963801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy assessment for the co-registration between optical and VIVE head-mounted display tracking.
    Groves LA; Carnahan P; Allen DR; Adam R; Peters TM; Chen ECS
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1207-1215. PubMed ID: 31069642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement Accuracy of the HTC VIVE Tracker 3.0 Compared to Vicon System for Generating Valid Positional Feedback in Virtual Reality.
    Merker S; Pastel S; Bürger D; Schwadtke A; Witte K
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye Tracking in Virtual Reality: Vive Pro Eye Spatial Accuracy, Precision, and Calibration Reliability.
    Schuetz I; Fiehler K
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 37125009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Let's get it started: Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive.
    Josupeit J
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 39139654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment.
    Vox JP; Weber A; Wolf KI; Izdebski K; Schüler T; König P; Wallhoff F; Friemert D
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Walking-in-Place Method for Virtual Reality Using Position and Orientation Tracking.
    Lee J; Ahn SC; Hwang JI
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NotifiVR: Exploring Interruptions and Notifications in Virtual Reality.
    Ghosh S; Winston L; Panchal N; Kimura-Thollander P; Hotnog J; Cheong D; Reyes G; Abowd GD
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1447-1456. PubMed ID: 29543163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JanusVF: accurate navigation using SCAAT and virtual fiducials.
    Hutson M; Reiners D
    IEEE Trans Vis Comput Graph; 2011 Jan; 17(1):3-13. PubMed ID: 20548110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size and shape constancy in consumer virtual reality.
    Hornsey RL; Hibbard PB; Scarfe P
    Behav Res Methods; 2020 Aug; 52(4):1587-1598. PubMed ID: 32399659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.