These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33669170)

  • 21. Tuning the sphere-to-rod transition in the self-assembly of thermoresponsive polymer hybrids.
    Lee J; Park H; Jeong EJ; Kwark YJ; Lee KY
    Colloids Surf B Biointerfaces; 2015 Dec; 136():612-7. PubMed ID: 26477006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Thermoresponsive Hydrogels Synthesized by Conventional Free Radical and RAFT Polymerization.
    Joubert F; Cheong Phey Denn P; Guo Y; Pasparakis G
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior.
    Hou Y; Matthews AR; Smitherman AM; Bulick AS; Hahn MS; Hou H; Han A; Grunlan MA
    Biomaterials; 2008 Aug; 29(22):3175-84. PubMed ID: 18455788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoresponsive double network micropillared hydrogels for controlled cell release.
    Fei R; Hou H; Munoz-Pinto D; Han A; Hahn MS; Grunlan MA
    Macromol Biosci; 2014 Sep; 14(9):1346-52. PubMed ID: 24956117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid harvesting of stem cell sheets by thermoresponsive bulk poly(
    Choi A; Yoon H; Han SJ; Lee JH; Rhyou IH; Kim DS
    Biomater Sci; 2020 Sep; 8(19):5260-5270. PubMed ID: 32930245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing.
    Zubik K; Singhsa P; Wang Y; Manuspiya H; Narain R
    Polymers (Basel); 2017 Mar; 9(4):. PubMed ID: 30970798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermoresponsive Double Network Hydrogels with Exceptional Compressive Mechanical Properties.
    Means AK; Ehrhardt DA; Whitney LV; Grunlan MA
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28895241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Sacrificial PLA Block Mediated Route to Injectable and Degradable PNIPAAm-Based Hydrogels.
    Tebong Mbah V; Pertici V; Lacroix C; Verrier B; Stipa P; Gigmes D; Trimaille T
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties.
    Cheng SX; Zhang JT; Zhuo RX
    J Biomed Mater Res A; 2003 Oct; 67(1):96-103. PubMed ID: 14517866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of polyelectrolyte on the thermosensitive property of PNIPAAm-based copolymer hydrogels.
    Zhang XZ; Chu CC
    J Mater Sci Mater Med; 2007 Sep; 18(9):1771-9. PubMed ID: 17483894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization and Quantification of Microwaves Using Thermoresponsive Color-Change Hydrogel.
    Nakamitsu M; Imai H; Oaki Y
    ACS Sens; 2020 Jan; 5(1):133-139. PubMed ID: 31833361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stretchable and Self-Healable Conductive Hydrogels for Wearable Multimodal Touch Sensors with Thermoresponsive Behavior.
    Kweon OY; Samanta SK; Won Y; Yoo JH; Oh JH
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26134-26143. PubMed ID: 31283164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.
    Koriyama T; Asoh TA; Kikuchi A
    Colloids Surf B Biointerfaces; 2016 Nov; 147():408-415. PubMed ID: 27559999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of bioactive compounds on capillary inner surfaces bearing a dense thermoresponsive polymer brush.
    Koriyama T; Takayama Y; Hisatsune C; Asoh TA; Kikuchi A
    J Biomater Sci Polym Ed; 2017; 28(10-12):900-912. PubMed ID: 27827558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels.
    Xu XD; Zhang XZ; Yang J; Cheng SX; Zhuo RX; Huang YQ
    Langmuir; 2007 Apr; 23(8):4231-6. PubMed ID: 17348696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel.
    Zhang XZ; Sun GM; Wu DQ; Chu CC
    J Mater Sci Mater Med; 2004 Aug; 15(8):865-75. PubMed ID: 15477738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer.
    Liu M; Wen Y; Song X; Zhu JL; Li J
    Carbohydr Polym; 2019 Sep; 219():280-289. PubMed ID: 31151526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.
    Yang HW; Lee AW; Huang CH; Chen JK
    Soft Matter; 2014 Nov; 10(41):8330-40. PubMed ID: 25196131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a self-cleaning sensor membrane for implantable biosensors.
    Gant RM; Hou Y; Grunlan MA; Coté GL
    J Biomed Mater Res A; 2009 Sep; 90(3):695-701. PubMed ID: 18563815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.