BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33669205)

  • 21. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.
    Choi D; Poudel N; Park S; Akinwande D; Cronin SB; Watanabe K; Taniguchi T; Yao Z; Shi L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11101-11107. PubMed ID: 29528211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dark mode in scanning thermal microscopy.
    Ramiandrisoa L; Allard A; Joumani Y; Hay B; Gomés S
    Rev Sci Instrum; 2017 Dec; 88(12):125115. PubMed ID: 29289173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of Thermal Transport Properties of Self-Assembled Monolayers on Au(111) by Contact and Noncontact Scanning Thermal Microscopy.
    Fujii S; Shoji Y; Fukushima T; Nishino T
    J Am Chem Soc; 2021 Nov; 143(44):18777-18783. PubMed ID: 34713695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models.
    Li Y; Mehra N; Ji T; Zhu J
    Nanoscale Horiz; 2018 Sep; 3(5):505-516. PubMed ID: 32254136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
    Shekhawat GS; Ramachandran S; Jiryaei Sharahi H; Sarkar S; Hujsak K; Li Y; Hagglund K; Kim S; Aden G; Chand A; Dravid VP
    ACS Nano; 2018 Feb; 12(2):1760-1767. PubMed ID: 29401382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.
    Wielgoszewski G; Pałetko P; Tomaszewski D; Zaborowski M; Jóźwiak G; Kopiec D; Gotszalk T; Grabiec P
    Micron; 2015 Dec; 79():93-100. PubMed ID: 26381074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly(vinyl alcohol)/Hexagonal Boron Nitride Nanohybrid Films.
    Kwon OH; Ha T; Kim DG; Kim BG; Kim YS; Shin TJ; Koh WG; Lim HS; Yoo Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34625-34633. PubMed ID: 30216038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance.
    Chae H; Hwang G; Kwon O
    Ultramicroscopy; 2016 Dec; 171():195-203. PubMed ID: 27694037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realizing the Accurate Measurements of Thermal Conductivity over a Wide Range by Scanning Thermal Microscopy Combined with Quantitative Prediction of Thermal Contact Resistance.
    Zhang Q; Zhu W; Zhou J; Deng Y
    Small; 2023 Aug; 19(32):e2300968. PubMed ID: 37066734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies.
    Sojo-Gordillo JM; Gadea-Diez G; Renahy D; Salleras M; Duque-Sierra C; Vincent P; Fonseca L; Chapuis PO; Morata A; Gomès S; Tarancón A
    Small; 2024 Apr; 20(16):e2305831. PubMed ID: 38088536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Mapping of Unmodulated Temperature Fields with Nanometer Resolution.
    Reihani A; Luan Y; Yan S; Lim JW; Meyhofer E; Reddy P
    ACS Nano; 2022 Jan; 16(1):939-950. PubMed ID: 34958551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
    Mortazavi B; Pereira LFC; Jiang JW; Rabczuk T
    Sci Rep; 2015 Aug; 5():13228. PubMed ID: 26286820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy.
    Nam K; Kim H; Park W; Ahn JS; Choi S
    Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.
    Hwang G; Kwon O
    Nanoscale; 2016 Mar; 8(9):5280-90. PubMed ID: 26880606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of carbon fibres and carbon-carbon composites by scanning thermal microscopy.
    Blanco C; Appleyard SP; Rand B
    J Microsc; 2002 Jan; 205(Pt 1):21-32. PubMed ID: 11856378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal characterization of morphologically diverse copper phthalocyanine thin layers by scanning thermal microscopy.
    Trefon-Radziejewska D; Juszczyk J; Krzywiecki M; Hamaoui G; Horny N; Antoniow JS; Chirtoc M
    Ultramicroscopy; 2022 Mar; 233():113435. PubMed ID: 34864284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.