BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 33669330)

  • 1. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns.
    Probst H; Katzer K; Nocke A; Hickmann R; Zimmermann M; Cherif C
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles.
    Islam GMN; Collie S; Qasim M; Ali MA
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Elastic, Electrically Conductive Coating for TPU Filaments.
    Grellmann H; Bruns M; Lohse FM; Kruppke I; Nocke A; Cherif C
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality.
    Ke K; Sang Z; Manas-Zloczower I
    Nanoscale Adv; 2019 Jun; 1(6):2337-2347. PubMed ID: 36131959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.
    Wang Z; Huang Y; Sun J; Huang Y; Hu H; Jiang R; Gai W; Li G; Zhi C
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24837-43. PubMed ID: 27558025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles.
    Hossain MM; Lubna MM; Bradford PD
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3365-3376. PubMed ID: 36622361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt Spinning of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Water Detection.
    Regnier J; Cayla A; Campagne C; Devaux É
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane.
    Kim NP
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing.
    Eutionnat-Diffo PA; Cayla A; Chen Y; Guan J; Nierstrasz V; Campagne C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale Production of Highly Stretchable CNT/Cotton/Spandex Composite Yarn for Wearable Applications.
    Cai G; Yang M; Pan J; Cheng D; Xia Z; Wang X; Tang B
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32726-32735. PubMed ID: 30176716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors.
    He Z; Zhou G; Byun JH; Lee SK; Um MK; Park B; Kim T; Lee SB; Chou TW
    Nanoscale; 2019 Mar; 11(13):5884-5890. PubMed ID: 30869716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics.
    Zhou J; Zhao S; Tang L; Zhang D; Sheng B
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38031357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning.
    Kim H; Moon H; Lim D; Jeong W
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics.
    Yin Z; Jian M; Wang C; Xia K; Liu Z; Wang Q; Zhang M; Wang H; Liang X; Liang X; Long Y; Yu X; Zhang Y
    Nano Lett; 2018 Nov; 18(11):7085-7091. PubMed ID: 30278140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics.
    Tzounis L; Petousis M; Grammatikos S; Vidakis N
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials.
    Tang J; Wu Y; Ma S; Yan T; Pan Z
    iScience; 2022 Oct; 25(10):105162. PubMed ID: 36212024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.
    Lu Y; Jiang J; Yoon S; Kim KS; Kim JH; Park S; Kim SH; Piao L
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2093-2104. PubMed ID: 29277998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.
    Sang Z; Ke K; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36483-36492. PubMed ID: 30280558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor.
    Zhuang Y; Guo Y; Li J; Jiang K; Yu Y; Zhang H; Liu D
    RSC Adv; 2020 Jun; 10(40):23644-23652. PubMed ID: 35517319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.