These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33669535)

  • 41. Controlled hydrothermal synthesis and structural characterization of a nickel selenide series.
    Zhuang Z; Peng Q; Zhuang J; Wang X; Li Y
    Chemistry; 2005 Dec; 12(1):211-7. PubMed ID: 16259035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrothermal growth of Zn
    Chembanthodi Kuttykrishnan KS; Mohammed JB
    Luminescence; 2018 Jun; 33(4):675-680. PubMed ID: 29498205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis, Characterization of α-GaOOH Self-Assembly and Its Application in Removal of Perfluorinated Compounds.
    Muruganandham M; Suri RP; Abdel Wahed MS; Sillanpää M; Wu JJ; Ahmmad B
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6524-32. PubMed ID: 26716208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles.
    Meng JX; Zhang MF; Liu YL; Man SQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jan; 66(1):81-5. PubMed ID: 16815080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and luminescent properties of Eu(TTA)(3).3H(2)O nanocrystallines.
    Liu Q; Wang DM; Li YY; Yan M; Wei Q; Du B
    Luminescence; 2010; 25(4):307-10. PubMed ID: 19630091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-crystalline Bi2S3 nanobelts: hydrothermal synthesis and growth mechanism.
    Xing R; Li D; An C; Zhang L; Li Q; Liu S
    J Nanosci Nanotechnol; 2012 Oct; 12(10):8029-33. PubMed ID: 23421174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and characterization of a Eu
    Venkatesh Bharathi N; Jeyakumaran T; Ramaswamy S; Jayabalakrishnan SS
    Luminescence; 2021 Jun; 36(4):849-859. PubMed ID: 33569861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability.
    Ma MG; Zhu JF; Li SM; Jia N; Sun RC
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1511-7. PubMed ID: 24364953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
    Mohandes F; Salavati-Niasari M; Fathi M; Fereshteh Z
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():29-36. PubMed ID: 25491798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Luminescence properties in relation to controllable morphologies of Ba
    Liang P
    RSC Adv; 2019 Jan; 9(2):891-898. PubMed ID: 35517618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Morphology controlled NH4V3O8 microcrystals by hydrothermal synthesis.
    Zakharova GS; Täschner Ch; Kolb T; Jähne C; Leonhardt A; Büchner B; Klingeler R
    Dalton Trans; 2013 Apr; 42(14):4897-902. PubMed ID: 23370695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning the architecture and properties of microstructured yttrium tungstate oxide hydroxide and lanthanum tungstate.
    Kaczmarek AM; Liu YY; Van der Voort P; Van Deun R
    Dalton Trans; 2013 Apr; 42(15):5471-9. PubMed ID: 23426044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced red emission from BaMoO
    Luo W; Ling D; Bao S; Xiong H; Zhang R; Li B; Wu H
    Luminescence; 2018 Mar; 33(2):312-317. PubMed ID: 29058364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal synthesis, characterization and photocatalytic properties of Cu2PO4OH with hierarchical morphologies.
    Kwak CH; Cho IS; Lee S; An JS; Hong KS
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1185-90. PubMed ID: 20352776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controllable synthesis of ZnO with various morphologies by hydrothermal method.
    Li X; Zhang F; Ma C; Deng Y; Wang Z; Elingarami S; He N
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2028-36. PubMed ID: 22755016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile controlled synthesis of Ag
    He G; Yang W; Zheng W; Gong L; Wang X; An Y; Tian M
    RSC Adv; 2019 Jun; 9(32):18222-18231. PubMed ID: 35515254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.67Sr0.33MnO3 manganite.
    Anwar MS; Kumar S; Ahmed F; Kim GW; Koo BH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5523-6. PubMed ID: 22966603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Influence of TiO
    Luo W; Blanchard J; Xue Y; Taleb A
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate.
    Zhang Y; Mu J
    Nanotechnology; 2007 Feb; 18(7):075606. PubMed ID: 21730508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrothermal synthesis, characterization and luminescence properties of YbVO4:Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) nanocrystals.
    Xu Z; Zhao Q; Ge X; Di S; Sun Y
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5505-12. PubMed ID: 23882786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.