These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33669678)

  • 21. Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends.
    Na YH; He Y; Shuai X; Kikkawa Y; Doi Y; Inoue Y
    Biomacromolecules; 2002; 3(6):1179-86. PubMed ID: 12425654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers.
    Chu B; Zhang L; Qu Y; Chen X; Peng J; Huang Y; Qian Z
    Sci Rep; 2016 Sep; 6():34069. PubMed ID: 27677842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and enzymatic degradation of optically active depsipeptide copolymers.
    Shirahama H; Umemoto K; Yasuda H
    J Biomater Sci Polym Ed; 1999; 10(6):621-39. PubMed ID: 10385224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long term efficacy and fate of a right ventricular outflow tract replacement using an elastomeric cardiac patch consisting of caprolactone and D,L-lactide copolymers.
    Fujimoto KL; Yamawaki-Ogata A; Uto K; Usui A; Narita Y; Ebara M
    Acta Biomater; 2021 Mar; 123():222-229. PubMed ID: 33476828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. β-Pyridylenolate zinc catalysts for the ring-opening homo- and copolymerization of ε-caprolactone and lactides.
    Bai J; Xiao X; Zhang Y; Chao J; Chen X
    Dalton Trans; 2017 Aug; 46(30):9846-9858. PubMed ID: 28685784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers.
    Yang X; Cui C; Tong Z; Sabanayagam CR; Jia X
    Acta Biomater; 2013 Sep; 9(9):8232-44. PubMed ID: 23770222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers.
    Robles-González F; Rodríguez-Hernández T; Ledezma-Pérez AS; Díaz de León R; De Jesús-Téllez MA; López-González HR
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of PLCL Block Polymer with Tunable Structure and Properties for Biomedical Application.
    Luo C; Liu S; Luo W; Wang J; He H; Chen C; Xiao L; Liu C; Li Y
    Macromol Biosci; 2023 Apr; 23(4):e2200507. PubMed ID: 36645702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of Biodegradable and Elastic Poly(ε-caprolactone-co-lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier.
    Park JH; Lee BK; Park SH; Kim MG; Lee JW; Lee HY; Lee HB; Kim JH; Kim MS
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28335550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the thermo- and pH-responsive assembly of triblock copolymers based on poly(ethylene glycol) and functionalized poly(ε-caprolactone).
    Safaei Nikouei N; Lavasanifar A
    Acta Biomater; 2011 Oct; 7(10):3708-18. PubMed ID: 21672641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the Properties of Poly(ε-caprolactone) by Simple and Effective Random Copolymerization of ε-Caprolactone with
    Fuoco T; Finne-Wistrand A
    Biomacromolecules; 2019 Aug; 20(8):3171-3180. PubMed ID: 31268691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide).
    Zhang J; Wang LQ; Wang H; Tu K
    Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Poly(l-lactide-co-ε-caprolactone) Copolymer: Structure, Toughness, and Elasticity.
    Zhang M; Chang Z; Wang X; Li Q
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amphiphilic copolymers of epsilon-caprolactone and gamma-substituted epsilon-caprolactone. Synthesis and functionalization of poly(D,L-lactide) nanoparticles.
    Gautier S; D'Aloia V; Halleux O; Mazza M; Lecomte P; Jérôme R
    J Biomater Sci Polym Ed; 2003; 14(1):63-85. PubMed ID: 12635771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triblock copolymers of ε-caprolactone, trimethylene carbonate, and L-lactide: effects of using random copolymer as hard-block.
    Widjaja LK; Kong JF; Chattopadhyay S; Lipik VT; Liow SS; Abadie MJ; Venkatraman SS
    J Mech Behav Biomed Mater; 2012 Feb; 6():80-8. PubMed ID: 22301176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and degradation of elastomeric four-armed star copolymers based on caprolactone and L-lactide.
    Kong JF; Lipik V; Abadie MJ; Roshan Deen G; Venkatraman SS
    J Biomed Mater Res A; 2012 Dec; 100(12):3436-45. PubMed ID: 22807099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.