BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33669763)

  • 1. In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules.
    Vittorio S; Gitto R; Adornato I; Russo E; De Luca L
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacophore-guided fragment-based design of novel mammalian target of rapamycin inhibitors: extra precision docking, fingerprint-based 2D and atom-based 3D-QSAR modelling.
    Kumar A; Rai S; Rathi E; Agarwal P; Kini SG
    J Biomol Struct Dyn; 2021 Mar; 39(4):1155-1173. PubMed ID: 32037974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glycerol-water mixtures in the stability of FKBP12-rapalog-FRB complexes.
    Lopez JJD; Gaza JT; Nellas RB
    J Mol Graph Model; 2023 Nov; 124():108556. PubMed ID: 37423019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
    Veverka V; Crabbe T; Bird I; Lennie G; Muskett FW; Taylor RJ; Carr MD
    Oncogene; 2008 Jan; 27(5):585-95. PubMed ID: 17684489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
    Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC
    Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Macrocyclic mTOR Modulators of Rapamycin Binding Site via Pharmacoinformatics Approaches.
    Parate S; Kumar V; Hong JC; Lee KW
    Comput Biol Chem; 2023 Jun; 104():107875. PubMed ID: 37148678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate.
    Sapienza PJ; Mauldin RV; Lee AL
    J Mol Biol; 2011 Jan; 405(2):378-94. PubMed ID: 21073880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.
    Edwards SR; Wandless TJ
    J Biol Chem; 2007 May; 282(18):13395-401. PubMed ID: 17350953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New potential inhibitors of mTOR: a computational investigation integrating molecular docking, virtual screening and molecular dynamics simulation.
    Kist R; Caceres RA
    J Biomol Struct Dyn; 2017 Dec; 35(16):3555-3568. PubMed ID: 27860549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An In silico Approach to Identify High Affinity Small Molecule Targeting m-TOR Inhibitors for the Clinical Treatment of Breast Cancer.
    Patidar K; Panwar U; Vuree S; Sweta J; Sandhu MK; Nayarisseri A; Singh SK
    Asian Pac J Cancer Prev; 2019 Apr; 20(4):1229-1241. PubMed ID: 31030499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Mammalian Target of Rapamycin (mTOR) Modulators Derived from Natural Product Databases and Marine Extracts by Using Molecular Docking Techniques.
    Ruiz-Torres V; Losada-Echeberría M; Herranz-López M; Barrajón-Catalán E; Galiano V; Micol V; Encinar JA
    Mar Drugs; 2018 Oct; 16(10):. PubMed ID: 30326670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based grafting and identification of kinase-inhibitors to target mTOR signaling pathway as potential therapeutics for glioblastoma.
    Cui YH; Chen J; Xu T; Tian HL
    Comput Biol Chem; 2015 Feb; 54():57-65. PubMed ID: 25625417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for potential mTOR inhibitors: Ligand-based drug design, docking and molecular dynamics studies of rapamycin binding site.
    Kist R; Timmers LFSM; Caceres RA
    J Mol Graph Model; 2018 Mar; 80():251-263. PubMed ID: 29414044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics guided insight, binding free energy calculations and pharmacophore-based virtual screening for the identification of potential VEGFR2 inhibitors.
    Rathi E; Kumar A; Kini SG
    J Recept Signal Transduct Res; 2019; 39(5-6):415-433. PubMed ID: 31755336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease.
    Iqbal S; Anantha Krishnan D; Gunasekaran K
    J Biomol Struct Dyn; 2018 Nov; 36(15):4029-4044. PubMed ID: 29182053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in silico protocol for identifying mTOR inhibitors from natural products.
    Chen L; Wang L; Gu Q; Xu J
    Mol Divers; 2014 Nov; 18(4):841-52. PubMed ID: 25156384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential natural mTOR inhibitors screened by in silico approach and suppress hepatic stellate cells activation.
    Thiyagarajan V; Lee KW; Leong MK; Weng CF
    J Biomol Struct Dyn; 2018 Dec; 36(16):4220-4234. PubMed ID: 29183268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.
    Sekiguchi M; Kobashigawa Y; Kawasaki M; Yokochi M; Kiso T; Suzumura K; Mori K; Teramura T; Inagaki F
    Protein Eng Des Sel; 2011 Nov; 24(11):811-7. PubMed ID: 21900305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacophore modeling and virtual screening in search of novel Bruton's tyrosine kinase inhibitors.
    Sharma A; Thelma BK
    J Mol Model; 2019 Jun; 25(7):179. PubMed ID: 31172362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.