These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33670001)

  • 41. Development of Low-Resistance Ohmic Contacts with Bilayer NiO/Al-Doped ZnO Thin Films to p-type GaN.
    Slimani Tlemcani T; Mauduit C; Bah M; Zhang M; Charles M; Gwoziecki R; Yvon A; Alquier D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8723-8729. PubMed ID: 36732675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A silicon carbide wireless temperature sensing system for high temperature applications.
    Yang J
    Sensors (Basel); 2013 Feb; 13(2):1884-901. PubMed ID: 23377189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System.
    Zhang J; Chen J; Li M; Ge Y; Wang T; Shan P; Mao X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capacitive-piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range.
    Shen Z; Yang C; Yao C; Liu Z; Huang X; Liu Z; Mo J; Xu H; He G; Tao J; Xie X; Hang T; Chen HJ; Liu F
    Mater Horiz; 2023 Feb; 10(2):499-511. PubMed ID: 36412496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer.
    Cao G; Wang X; Xu Y; Liu S
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27529254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Piezoresistive temperature sensors fabricated by a surface micromachining CMOS MEMS process.
    Cai C; Tan J; Hua D; Qin M; Zhu N
    Sci Rep; 2018 Nov; 8(1):17065. PubMed ID: 30459315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Highly Accurate, Polynomial-Based Digital Temperature Compensation for Piezoresistive Pressure Sensor in 180 nm CMOS Technology.
    Ali I; Asif M; Shehzad K; Rehman MRU; Kim DG; Rikan BS; Pu Y; Yoo SS; Lee KY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32937979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
    Orthner MP; Lin G; Avula M; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators B Chem; 2010 Mar; 145(2):807-816. PubMed ID: 23750073
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor.
    Li P; Li W; Chen C; Wu S; Pan P; Sun K; Liu M; Wang J; Li X
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Status and Prospects of Cubic Silicon Carbide Power Electronics Device Technology.
    Li F; Roccaforte F; Greco G; Fiorenza P; La Via F; Pérez-Tomas A; Evans JE; Fisher CA; Monaghan FA; Mawby PA; Jennings M
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A smart high accuracy silicon piezoresistive pressure sensor temperature compensation system.
    Zhou G; Zhao Y; Guo F; Xu W
    Sensors (Basel); 2014 Jul; 14(7):12174-90. PubMed ID: 25006998
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Research of a Novel Ultra-High Pressure Sensor with High-Temperature Resistance.
    Zhang GD; Zhao YL; Zhao Y; Wang XC; Wei XY
    Micromachines (Basel); 2017 Dec; 9(1):. PubMed ID: 30393281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization, modeling and design parameters identification of silicon carbide junction field effect transistor for temperature sensor applications.
    Ben Salah T; Khachroumi S; Morel H
    Sensors (Basel); 2010; 10(1):388-99. PubMed ID: 22315547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward High-Performance Piezoresistive Polymer Derived SiOC Ceramics through Masked Stereolithography 3D Printing with β-Silicon Carbide Nanopowder Reinforcement.
    Rahman MS; Phani A; Kim S
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300602. PubMed ID: 38052160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silicon-carbide-based extreme environment temperature sensor using wavelength-tuned signal processing.
    Riza NA; Sheikh M
    Opt Lett; 2008 May; 33(10):1129-31. PubMed ID: 18483535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies.
    Zhong W; Jiang H; Jia K; Ding X; Yadav A; Ke Y; Li M; Chen Y; Wang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37764-37773. PubMed ID: 32814398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte.
    Chang CH; Hsia B; Alper JP; Wang S; Luna LE; Carraro C; Lu SY; Maboudian R
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26658-65. PubMed ID: 26569457
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-performance varistors simply by hot-dipping zinc oxide thin films in Pr
    Wang Y; Peng Z; Wang Q; Wang C; Fu X
    Sci Rep; 2017 Feb; 7():41994. PubMed ID: 28155890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laser optical gas sensor by photoexcitation effect on refractive index.
    Lim G; DeSilva UP; Quick NR; Kar A
    Appl Opt; 2010 Mar; 49(9):1563-73. PubMed ID: 20300151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor.
    Meng X; Zhao Y
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27005627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.