BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 33670028)

  • 1. Improving the Inhibitory Effect of Phages against
    Aghaee BL; Khan Mirzaei M; Alikhani MY; Mojtahedi A; Maurice CF
    Viruses; 2021 Feb; 13(2):. PubMed ID: 33670028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sewage and sewage-contaminated environments are the most prominent sources to isolate phages against Pseudomonas aeruginosa.
    Aghaee BL; Mirzaei MK; Alikhani MY; Mojtahedi A
    BMC Microbiol; 2021 May; 21(1):132. PubMed ID: 33931013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions.
    Latz S; Krüttgen A; Häfner H; Buhl EM; Ritter K; Horz HP
    Viruses; 2017 Oct; 9(11):. PubMed ID: 29077053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients.
    Chang RYK; Das T; Manos J; Kutter E; Morales S; Chan HK
    AAPS J; 2019 Apr; 21(3):49. PubMed ID: 30949776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piperacillin and ceftazidime produce the strongest synergistic phage-antibiotic effect in Pseudomonas aeruginosa.
    Uchiyama J; Shigehisa R; Nasukawa T; Mizukami K; Takemura-Uchiyama I; Ujihara T; Murakami H; Imanishi I; Nishifuji K; Sakaguchi M; Matsuzaki S
    Arch Virol; 2018 Jul; 163(7):1941-1948. PubMed ID: 29550930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences.
    Karumidze N; Thomas JA; Kvatadze N; Goderdzishvili M; Hakala KW; Weintraub ST; Alavidze Z; Hardies SC
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1609-17. PubMed ID: 22562168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial.
    Jault P; Leclerc T; Jennes S; Pirnay JP; Que YA; Resch G; Rousseau AF; Ravat F; Carsin H; Le Floch R; Schaal JV; Soler C; Fevre C; Arnaud I; Bretaudeau L; Gabard J
    Lancet Infect Dis; 2019 Jan; 19(1):35-45. PubMed ID: 30292481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells.
    Alemayehu D; Casey PG; McAuliffe O; Guinane CM; Martin JG; Shanahan F; Coffey A; Ross RP; Hill C
    mBio; 2012; 3(2):e00029-12. PubMed ID: 22396480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage.
    Hagens S; Habel A; Bläsi U
    Microb Drug Resist; 2006; 12(3):164-8. PubMed ID: 17002542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections.
    Pires DP; Vilas Boas D; Sillankorva S; Azeredo J
    J Virol; 2015 Aug; 89(15):7449-56. PubMed ID: 25972556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals.
    de Melo ACC; da Mata Gomes A; Melo FL; Ardisson-Araújo DMP; de Vargas APC; Ely VL; Kitajima EW; Ribeiro BM; Wolff JLC
    BMC Microbiol; 2019 Jun; 19(1):134. PubMed ID: 31208333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.
    Furusawa T; Iwano H; Hiyashimizu Y; Matsubara K; Higuchi H; Nagahata H; Niwa H; Katayama Y; Kinoshita Y; Hagiwara K; Iwasaki T; Tanji Y; Yokota H; Tamura Y
    Appl Environ Microbiol; 2016 Sep; 82(17):5332-9. PubMed ID: 27342558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a new
    Whiteley LE; Whiteley M
    Microbiol Spectr; 2024 Mar; 12(3):e0371923. PubMed ID: 38345389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.
    Krylov VN
    Adv Virus Res; 2014; 88():227-78. PubMed ID: 24373314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms.
    Pires D; Sillankorva S; Faustino A; Azeredo J
    Res Microbiol; 2011 Oct; 162(8):798-806. PubMed ID: 21782936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Novel Bacteriophages Improve Survival in
    Jeon J; Yong D
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of Bacteriophages in Removing Biofilms of
    Fong SA; Drilling A; Morales S; Cornet ME; Woodworth BA; Fokkens WJ; Psaltis AJ; Vreugde S; Wormald PJ
    Front Cell Infect Microbiol; 2017; 7():418. PubMed ID: 29018773
    [No Abstract]   [Full Text] [Related]  

  • 18. Engineered Superinfective Pf Phage Prevents Dissemination of Pseudomonas aeruginosa in a Mouse Burn Model.
    Prokopczuk FI; Im H; Campos-Gomez J; Orihuela CJ; Martínez E
    mBio; 2023 Jun; 14(3):e0047223. PubMed ID: 37039641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa.
    Ong SP; Azam AH; Sasahara T; Miyanaga K; Tanji Y
    J Biosci Bioeng; 2020 Jun; 129(6):693-699. PubMed ID: 32107153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential.
    Wang X; Tang J; Dang W; Xie Z; Zhang F; Hao X; Sun S; Liu X; Luo Y; Li M; Gu Y; Wang Y; Chen Q; Shen X; Xu L
    Microbiol Spectr; 2023 Jun; 11(3):e0463622. PubMed ID: 37125933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.